Треугольник серпинского алгоритм построения

Треугольник серпинского алгоритм построения

Ещё один фрактал, обладающий свойством самоподобия, — это треугольник Серпинского. Его пример показан на рисунке 3. Треугольник Серпинского иллюстрирует трёхходовой рекурсивный алгоритм. Процедура его отрисовки вручную очень проста. Начинаем с большого треугольника, который делим на четыре маленьких, связанных с серединами сторон первоначального. Игнорируя вновь созданный внутренний треугольник, делаем всё то же самое для каждого из трёх угловых. Каждый раз при создании нового набора треугольников, вы рекурсивно применяете эту процедуру к трём меньшим угловым фигурам. Так можно продолжать до бесконечности (если у вас достаточно острый карандаш). Перед тем, как продолжить чтение, можете попробовать самостоятельно нарисовать треугольник Серпинского, используя описанный метод.

Рисунок 3: Треугольник Серпинского.

Поскольку мы можем повторять этот алгоритм до бесконечности, что сделать базовым случаем? Им станет произвольное число — сколько раз мы хотим разделить треугольник на части. Иногда это число называют “степенью” фрактала. Каждый раз при рекурсивном вызове мы вычитаем из степени единицу, пока она не станет равной нулю. Тогда мы останавливаем рекурсию. Код, генерирующий треугольник Серпинского с рисунка 3, показан в ActiveCode 4.

Рисование треугольника Серпинского (lst_st)

Программа из ActiveCode 4 следует изложенным выше идеям. Первое, что делает sierpinski , — это прорисовывает внешний треугольник. Затем идут три рекурсивных вызова, по одному для каждого из новых угловых треугольников, полученных после соединения средних точек сторон. Мы снова используем стандартный модуль Python turtle . Вы можете изучить в подробностях все его методы, воспользовавшись командой help(‘turtle’) в командной строке Python.

Посмотрите на код и подумайте, в каком порядке будут прорисовываться треугольники. Поскольку точный порядок углов определяется спецификацией начального набора, давайте предположим, что углы идут в следующем порядке: нижний левый, верхний, нижний правый. Так как функция sierpinski вызывает сама себя, вычисление будет идти к наименьшему возможному треугольнику в левом нижнем углу, а затем уже будут заполняться остальные треугольники в обратном порядке. Потом заполнятся треугольники в верхнем углу — к наименьшему и самому верхнему. Наконец, будут заполнен правый нижний угол, опять же по направлению к наименьшему нижнему правому.

Читайте также:  Где найти папку mods в симс 4

Иногда полезно думать о рекурсивных алгоритмах в терминах диаграммы вызовов функции. Рисунок 4 показывает, что рекурсивные вызовы всегда начинаются слева. Активная функция выделена чёрным, неактивные вызовы — серым. Чем ниже вы спускаетесь по рисунку 4, тем меньше треугольники. Функция заканчивает рисунок одного уровня за один раз; закончив с нижней левой частью, она перемещается к нижней середине и так далее.

Рисунок 4: Построение треугольника Серпинского.

Функция sierpinski сильно зависит от функции getMid . Последняя принимает в качестве аргументов две конечные точки и возвращает точку, находящуюся по середине между ними. В дополнение, ActiveCode 4 содержит функцию раскраски треугольников, использующую методы begin_fill и end_fill из модуля turtle . Это означает, что каждая степень треугольника Серпинского рисуется другим цветом.

readers online now | | Back to top

© Copyright 2014 Brad Miller, David Ranum. Created using Sphinx 1.2.3.

Разделы сайта

Задачи

Документация

Сайты партнеры

Свежая информация у нас на сайте: изготовление конусных свай

Архив

  • Январь, 2016 (1)
  • Июнь, 2015 (1)
  • Март, 2015 (1)
  • Май, 2014 (1)
  • Апрель, 2014 (1)
  • Январь, 2013 (1)
  • Декабрь, 2012 (1)
  • Май, 2012 (3)
  • Апрель, 2012 (3)
  • Март, 2012 (3)
  • Февраль, 2012 (1)
  • Декабрь, 2011 (1)

Рейтинг

Треугольник Серпинского

Опубликовано Штерцер Алина в Пнд, 05/25/2009 — 23:09

  • Задачи
  • Фрактальная графика
  • Pascal/Delphi

Построить фрактал треугольник Серпинского

Самым знаменитым примером площадного геометрического фрактала является треугольник Серпинского , строящийся путем разбиения треугольника, необязательно равностороннего – средними линиями на четыре подобных треугольника, исключением центрального и рекурсивного разбиения угловых треугольников до получения площадных элементов желаемого разрешения.

Преимущество использования рекурсии очевидно — без рекурсии построение такого рисунка состоящего более чем из шести уровней весьма проблематично, а рекурсия позволяет увеличивать количество уровней, не ограничиваясь минимальными размерами самого нижнего уровня. Например, с помощью этой программы можно увеличить количество уровней до пятнадцати при этом будет ощутима только некоторая задержка при выводе изображения на экран, а вот без рекурсии такой рисунок построить будет практически невозможно, так как изображение будет состоять более чем из тридцати одной тысячи треугольников.

Читайте также:  Утюг не пускает пар что делать

Алгоритм построения треугольника Серпинского довольно прост:
1) строится большой внешний треугольник (А);
2) строится треугольник, получающийся при соединении середин сторон большого треугольника (Б);
3) строятся треугольники, получающиеся аналогично элементу Б, но в качестве большого треугольника берутся треугольники,
образованные элементами А и Б.
Изображение состоит из однотипных элементов, связанных между собой зависимостью каждого следующего элемента от координат предыдущего.

Данная программа позволяет рисовать изображение в зависимости от введённого пользователем n уровней.

ФАКУЛЬТЕТ КИБЕРНЕТИКИ

Курсовая работа по материаловедению

студенты гр. КС-71-10

Смирнов Александр Николаевич

2. Определение фракталов.

3. Из истории изучения фракталов.

4. Классификация фракталов.

5. Геометрические фракталы.

6. Алгебраические фракталы.

7. Стохастические фракталы.

8. Фракталовые деревья.

9. Измерение тел.

10. Дробная размерность.

11. Практический расчет размерности.

12. Чем актуальны фракталы.

В данной курсовой работе рассматриваются основные вопросы, связанные с фракталами, такие как определение фракталов, их размерность, применение, а также история открытия.

В качестве примера приведен расчет размерности фрактала дистиллированной воды. При расчете был использован калькулятор размерности, так же приведены некоторые общие сведения о фракталах.

Фракталами называют бесконечно самоподобные фигуры, каждый фрагмент которых повторяется при уменьшении масштаба. Разветвления трубочек трахей, нейроны, сосудистая система человека, извилины берегов морей и озер, контуры деревьев — это все фракталы. Фракталы находят в местах таких малых, как клеточная мембрана, и таких огромных, как звездные галактики. Можно сказать, что фракталы – это уникальные объекты, порожденные непредсказуемыми движениями хаотического мира!

Из истории изучения фракталов

Термин «фрактал» был введен Б.Мандельбротом в 1975 г.. Согласно Мандельброту, фракталом (от лат. «fractus» — дробный, ломанный, разбитый) называется структура, состоящая из частей, подобных целому. Свойство самоподобия резко отличает фракталы от объектов классической геометрии. Термин самоподобие означает наличие тонкой, повторяющийся структуры, как на самых малых масштабах объекта, так и в макромасштабе.

История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса – самые наглядные, потому что в них сразу видно самоподобие. Примерами таких фракталов служат: кривые Коха, Леви, Минковского, треугольник Серпинского, губка Менгера, дерево Пифагора (Рис.1) и др. С математической точки зрения, фрактал — это, прежде всего, множество с дробной (промежуточной, «не целой») размерностью. В то время как гладкая евклидова линия заполняет в точности одномерное пространство, фрактальная кривая выходит за пределы одномерного пространства, вторгается за границы в двумерное пространство. Таким образом, фрактальная размерность кривой Коха будет находиться между 1 и 2. Это, прежде всего, означает, что у фрактального объекта невозможно точно измерить его длину!

Читайте также:  Портал госуслуг регистрация по снилс

Существует множество классификаций фракталов. Принято различать регулярные и нерегулярные фракталы, из которых первые являются плодом воображения (математическая абстракция), подобным снежинке Коха или треугольнику Серпинского, а вторые — продуктом природы или деятельности человека. Нерегулярные фракталы (рис.2) в отличие от регулярных сохраняют способность к самоподобию в ограниченных пределах, определяемых реальными размерами системы.

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, — это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста. Фрактал как природный объект — это вечное непрерывное движение, новое становление и развитие.

Кроме того, фракталы находят применение в децентрализованных компьютерных сетях и «фрактальных антеннах». Весьма интересны и перспективны для моделирования различных стохастических (не детерминированных) «случайных» процессов, так называемые «броуновские фракталы». В случае нанотехнологии фракталы тоже играют важную роль, поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью, то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы «дендримеров». Кроме того, принцип фрактальности (самоподобной, скейлинговой структуры) является отражением иерархичности строения системы и поэтому является более общим и универсальным, чем стандартные подходы к описанию строения и свойств наносистем.

Ссылка на основную публикацию
Технология etth что это
ETTH — Ethernet To The Home (ETTH) is a specific application of Fiber to the premises (FTTP) that first emerged...
Схема бп fsp350 60evf
Внимание! Все работы с силовыми цепями необходимо проводить соблюдая технику безопасности! В сети интернет можно найти очень много описаний и...
Схема включения синхронного генератора
Цель работы: целью лабораторной работы является изучение методов подключения генератора к системе методом точной синхронизации в ручном режиме. При подключении...
Технология nfc в наушниках что это
NFC — это аббревиатура от английского Near Field Communication. С помощью этой технологии становится возможным обмен данными между различными устройствами,...
Adblock detector