Теорема о циркуляции вектора магнитной напряженности

Теорема о циркуляции вектора магнитной напряженности

Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году.

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

В математической формулировке для магнитостатики теорема имеет следующий вид

Здесь — вектор магнитной индукции, — плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме

Эквивалентность интегральной и дифференциальной форм следует из теоремы Стокса.

Приведённая выше форма справедлива для вакуума. В случае применения её в среде (веществе), она будет корректна только в случае, если под j понимать вообще все токи, то есть учитывать и «микроскопические» токи, текущие в веществе, включая «микроскопические» токи, текущие в областях размерами порядка размера молекулы и магнитные моменты микрочастиц.

Поэтому в веществе, если не пренебрегать его магнитными свойствами, часто удобно из полного тока выделить ток намагничения, выразив его через величину намагниченности и введя вектор напряжённости магнитного поля

Тогда теорема о циркуляции запишется в форме

где под (в отличие от в формуле выше) имеются в виду т. н. свободные токи, в которых ток намагничения исключен (что бывает удобно практически, поскольку — это обычно уже в сущности макроскопические токи, которые не связаны с намагничением вещества и которые в принципе нетрудно непосредственно измерить).

В динамическом случае — то есть в общем случае классической электродинамики — когда поля меняются во времени (а в средах при этом меняется и их поляризация) — и речь тогда идет об обобщенной теореме, включающей , — всё сказанное выше относится и к микроскопическим токам, связанным с изменениями поляризации диэлектрика. Эта часть токов тогда учитывается в члене .

Теорема о циркуляции играет в магнитостатике приблизительно ту же роль, что и теорема Гаусса в электростатике. В частности, при наличии определённой симметрии задачи, она позволяет просто находить величину магнитного поля во всём пространстве по заданным токам. Например, для вычисления магнитного поля от бесконечного прямолинейного проводника с током по закону Био — Савара — Лапласа потребуется вычислить неочевидный интеграл, в то время как теорема о циркуляции (с учётом осевой симметрии задачи) позволяет дать мгновенный ответ:

вопрос 47. Квантовая статистика электронов в металлах. Функция Ферми. Уровни Ферми. Выроденное состояние электронного газа в металлах.

Квантовая статистика базируется на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон. Отсюда сразу вытекает различие классического и квантового распределений электронов по энергиям. С классической точки зрения энергия всех электронов при температуре абсолютного нуля должна равняться нулю. А по принципу Паули даже при абсолютном нуле число электронов на каждом уровне не может превышать двух. И если общее число свободных электронов в кристалле равно n, то при 0 К они займут n 2 наиболее низких энергетических уровней.

В квантовой теории вероятность заполнения энергетических состояний электронами определяется функцией Ферми:

-1 (8.7)

где W — энергия уровня, вероятность заполнения которого определяется, WF — энергия характеристического уровня, относительно которого кривая вероятности симметрична.

При T = 0 К функция Ферми обладает следующими свойствами: F(W) =1, если WF ≤W и
F(W) =0, если W>WF .

Таким образом, величина WF определяет максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля. Эту характеристическую энергию называют энергией Ферми или уровнем Ферми. Соответствующий ей потенциал j = WF/e называют электрохимическим потенциалом. Следует отметить, что энергия WF не зависит от объема кристалла, а определяется только концентрацией свободных электронов, что непосредственно вытекает из принципа Паули.

При нагревании кристалла ему сообщается тепловая энергия порядка kT. За счет этого возбуждения некоторые электроны, находящиеся вблизи уровня Ферми, начинают заполнять состояния с более высокой энергией: график функции распределения становится несколько пологим.

Распределение электронов в частично заполненной зоне (а) и функция вероятности заполнения электронами уровней (б): I – уровни, заполненные; II – интервал размывания; III – уровни, полностью свободные

Из формулы (8.7) легко видеть, что при любой температуре для уровня с энергией W =WF вероятность заполнения электронами равна 0,5. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 0,5 заполнены электронами. Наоборот, все уровни, лежащие выше уровня Ферми, с вероятностью более 0,5 свободны от электронов.

Распределение электронов по энергиям в металле можно представить параболической зависимостью, изображенной на рисунке 8.3. Электроны, расположенные в глубине от уровня Ферми, не могут обмениваться энергией с кристаллической решеткой, ибо для них все ближайшие энергетические состояния заняты.

Читайте также:  Отличие iphone от ipod

Рис. 8.3. Распределение электронов по энергиям в металле: 1-Т = 0 К; 2 —Т >> 0 К

Системы микрочастиц, поведение которых описывается статистикой Ферми–Дирака, называют вырожденными. В состоянии вырождения средняя энергия электронного газа практически не зависит от температуры. Электронный газ в металле остается вырожденным до тех пор, пока любой из электронов не сможет обмениваться энергией с кристаллической решеткой, а это, в свою очередь, возможно лишь тогда, когда средняя энергия тепловых колебаний станет близкой к энергии Ферми. Для металлов температура снятия вырождения TF по порядку величины составляет 10 4 К, т.е. превышает не только температуру плавления, но и температуру испарения металлов.

Вследствие вырождения в процессе электропроводности могут принимать участие не все свободные электроны, а только небольшая часть их, имеющая энергию, близкую к энергии Ферми. Только эти электроны способны изменять свои состояния под действием поля. Электрический ток, возникающий в металле под влиянием разности потенциалов, отражает изменения в распределении электронов по скоростям. В соответствии с квантовой статистикой это распределение является производным от распределения по энергиям и симметрично в отсутствие внешнего поля. Под действием электрического поля происходит рассеяние электронов под большими углами в процессе их упругих столкновений с узлами решетки. В результате этого возникает избыток быстрых электронов, движущихся против поля, и дефицит быстрых электронов с противоположным направлением скорости.

При изменении температуры энергия Ферми WF изменяется незначительно, что является спецификой вырожденного состояния электронного газа. Столь малые изменения в таком широком температурном диапазоне можно не учитывать. Концентрации свободных электронов в чистых металлах различаются незначительно. Температурное изменение n также очень мало. Поэтому проводимость определяется в основном средней длиной свободного пробега электронов, которая, в свою очередь, зависит от строения проводника, т.е. химической природы атомов и типа кристаллической решетки.

вопрос 48. Теплообмен при ламинарном обтекании плоской изотермической пластины.

Теплообмен — самопроизвольный необратимый процесс переноса теплоты от более нагретых тел к менее нагретым телам.

Ламинарное течение — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

Не нашли то, что искали? Воспользуйтесь поиском:

Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году.

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

В математической формулировке для магнитостатики теорема имеет следующий вид

Здесь — вектор магнитной индукции, — плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме

Эквивалентность интегральной и дифференциальной форм следует из теоремы Стокса.

Приведённая выше форма справедлива для вакуума. В случае применения её в среде (веществе), она будет корректна только в случае, если под j понимать вообще все токи, то есть учитывать и «микроскопические» токи, текущие в веществе, включая «микроскопические» токи, текущие в областях размерами порядка размера молекулы и магнитные моменты микрочастиц.

Поэтому в веществе, если не пренебрегать его магнитными свойствами, часто удобно из полного тока выделить ток намагничения, выразив его через величину намагниченности и введя вектор напряжённости магнитного поля

Тогда теорема о циркуляции запишется в форме

где под (в отличие от в формуле выше) имеются в виду т. н. свободные токи, в которых ток намагничения исключен (что бывает удобно практически, поскольку — это обычно уже в сущности макроскопические токи, которые не связаны с намагничением вещества и которые в принципе нетрудно непосредственно измерить).

В динамическом случае — то есть в общем случае классической электродинамики — когда поля меняются во времени (а в средах при этом меняется и их поляризация) — и речь тогда идет об обобщенной теореме, включающей , — всё сказанное выше относится и к микроскопическим токам, связанным с изменениями поляризации диэлектрика. Эта часть токов тогда учитывается в члене .

Теорема о циркуляции играет в магнитостатике приблизительно ту же роль, что и теорема Гаусса в электростатике. В частности, при наличии определённой симметрии задачи, она позволяет просто находить величину магнитного поля во всём пространстве по заданным токам. Например, для вычисления магнитного поля от бесконечного прямолинейного проводника с током по закону Био — Савара — Лапласа потребуется вычислить неочевидный интеграл, в то время как теорема о циркуляции (с учётом осевой симметрии задачи) позволяет дать мгновенный ответ:

вопрос 47. Квантовая статистика электронов в металлах. Функция Ферми. Уровни Ферми. Выроденное состояние электронного газа в металлах.

Читайте также:  Настройка цифровых каналов красноярск

Квантовая статистика базируется на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон. Отсюда сразу вытекает различие классического и квантового распределений электронов по энергиям. С классической точки зрения энергия всех электронов при температуре абсолютного нуля должна равняться нулю. А по принципу Паули даже при абсолютном нуле число электронов на каждом уровне не может превышать двух. И если общее число свободных электронов в кристалле равно n, то при 0 К они займут n 2 наиболее низких энергетических уровней.

В квантовой теории вероятность заполнения энергетических состояний электронами определяется функцией Ферми:

-1 (8.7)

где W — энергия уровня, вероятность заполнения которого определяется, WF — энергия характеристического уровня, относительно которого кривая вероятности симметрична.

При T = 0 К функция Ферми обладает следующими свойствами: F(W) =1, если WF ≤W и
F(W) =0, если W>WF .

Таким образом, величина WF определяет максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля. Эту характеристическую энергию называют энергией Ферми или уровнем Ферми. Соответствующий ей потенциал j = WF/e называют электрохимическим потенциалом. Следует отметить, что энергия WF не зависит от объема кристалла, а определяется только концентрацией свободных электронов, что непосредственно вытекает из принципа Паули.

При нагревании кристалла ему сообщается тепловая энергия порядка kT. За счет этого возбуждения некоторые электроны, находящиеся вблизи уровня Ферми, начинают заполнять состояния с более высокой энергией: график функции распределения становится несколько пологим.

Распределение электронов в частично заполненной зоне (а) и функция вероятности заполнения электронами уровней (б): I – уровни, заполненные; II – интервал размывания; III – уровни, полностью свободные

Из формулы (8.7) легко видеть, что при любой температуре для уровня с энергией W =WF вероятность заполнения электронами равна 0,5. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 0,5 заполнены электронами. Наоборот, все уровни, лежащие выше уровня Ферми, с вероятностью более 0,5 свободны от электронов.

Распределение электронов по энергиям в металле можно представить параболической зависимостью, изображенной на рисунке 8.3. Электроны, расположенные в глубине от уровня Ферми, не могут обмениваться энергией с кристаллической решеткой, ибо для них все ближайшие энергетические состояния заняты.

Рис. 8.3. Распределение электронов по энергиям в металле: 1-Т = 0 К; 2 —Т >> 0 К

Системы микрочастиц, поведение которых описывается статистикой Ферми–Дирака, называют вырожденными. В состоянии вырождения средняя энергия электронного газа практически не зависит от температуры. Электронный газ в металле остается вырожденным до тех пор, пока любой из электронов не сможет обмениваться энергией с кристаллической решеткой, а это, в свою очередь, возможно лишь тогда, когда средняя энергия тепловых колебаний станет близкой к энергии Ферми. Для металлов температура снятия вырождения TF по порядку величины составляет 10 4 К, т.е. превышает не только температуру плавления, но и температуру испарения металлов.

Вследствие вырождения в процессе электропроводности могут принимать участие не все свободные электроны, а только небольшая часть их, имеющая энергию, близкую к энергии Ферми. Только эти электроны способны изменять свои состояния под действием поля. Электрический ток, возникающий в металле под влиянием разности потенциалов, отражает изменения в распределении электронов по скоростям. В соответствии с квантовой статистикой это распределение является производным от распределения по энергиям и симметрично в отсутствие внешнего поля. Под действием электрического поля происходит рассеяние электронов под большими углами в процессе их упругих столкновений с узлами решетки. В результате этого возникает избыток быстрых электронов, движущихся против поля, и дефицит быстрых электронов с противоположным направлением скорости.

При изменении температуры энергия Ферми WF изменяется незначительно, что является спецификой вырожденного состояния электронного газа. Столь малые изменения в таком широком температурном диапазоне можно не учитывать. Концентрации свободных электронов в чистых металлах различаются незначительно. Температурное изменение n также очень мало. Поэтому проводимость определяется в основном средней длиной свободного пробега электронов, которая, в свою очередь, зависит от строения проводника, т.е. химической природы атомов и типа кристаллической решетки.

вопрос 48. Теплообмен при ламинарном обтекании плоской изотермической пластины.

Теплообмен — самопроизвольный необратимый процесс переноса теплоты от более нагретых тел к менее нагретым телам.

Ламинарное течение — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

Не нашли то, что искали? Воспользуйтесь поиском:

Напряжённость магнитного поля — это векторная величина, равная разности вектора магнитной индукции B и вектора намагниченности J.

В СИ: , где μ0 — магнитная постоянная

В СГС:

В системе СГС напряжённость магнитного поля измеряется в Эрстедах (Э), в системе СИ — в амперах на метр (L-1I). В технике Эрстед постепенно вытесняется единицей СИ — ампером на метр, 1 Э = 1000/(4π) А/м = 79,5775 А/м.

Читайте также:  Как установить виндовс на нетбук через флешку

Магнитная восприимчивость определяется отношением намагниченности единицы объёма вещества к напряжённости намагничивающего магнитного поля. По своему смыслу восприимчивость является величиной безразмерной. Иногда полезно ввести понятие удельной магнитной восприимчивостью, равной восприимчивости единицы массы вещества. В СИ удельная восприимчивость измеряется в обратных килограммах (кг−1). Аналогично, молярная магнитная восприимчивость определяется как восприимчивость одного моля вещества и измеряется в обратных молях (моль−1).

Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. В общем случае зависит как от свойств вещества, так и от величины и направления магнитного поля.

Обычно обозначается греческой буквой μ. Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных). В общем виде вводится следующим образом: . Для изотропных веществ справедливо: . В системе СГС магнитная проницаемость — безразмерная величина, в системе СИ вводят как размерную (абсолютную), так и безразмерную (относительную) магнитные проницаемости:. где μr — относительная, а μ — абсолютная проницаемость, μ0 — магнитная постоянная (магнитная проницаемость вакуума).

Теорема о циркуляции напряженности магнитного поля

Доказанная теоpема о циpкуляции относится к любому случаю магнитного поля пpи условии, если оно создано постоянными токами. Она выполняется и пpи наличии магнетика, в котоpом в пpисутствиии внешнего поля возникают связанные токи. В этом случае в пpавую часть уpавнения для циpкуляции вектоpа В должны войти как свободные, так и связанные токи. Рассмотpим такой случай. Пусть пpоводник с током помещен в магнетик (pис. 3.30). Магнетик может быть неодноpодным и иметь гpаницы (мы pассматpиваем общий случай). Циpкуляция вектоpа индукции магнитного поля по контуpу L пpопоpциональна сумме токов, сцепленных с контуpом. Кpоме тока J нужно учесть связанные токи молекул магнетика. Молекулы мы уподобляем магнитным диполям. Только часть диполей-молекул нанизаны на контуp. Эти диполи как бы обpазуют некую тpубку, по повеpхности котоpой течет ток. Уpавнение для циpкуляции вектоpа В будет иметь вид:

Втоpой член спpава пpедставляет собой связанный ток, сцепленный с контуpом. Его можно пpедставить в виде некотоpого интегpала.

34) Магнитомеханические явления.

Магнитный момент создаваемого эл-ном тока(вращение можно принять как

ток) равен Pm = IS (S — площадь орбиты) Pm = eVr/2; Момент обусловлен

движением эл-на по орбите, вледствие чего назыв. орбитальным моментом эл-

на. Направление вектора Pm образует с направлением движения эл-на

левовинтовую систему. Движущийся по орбите электрон обладает моментом

импульса M = mVr. Вектром М назыв. орбитальным механ. моментом эл-на. Он

образует с направлением движения эл-на правовинтовую систему. Следовательно

направления векторов Pm и M противоположны. Отношение магнитного момента

элементарной частицы к её механ. моменту назыв. магнитомеханическим

отношением. Для эл-на оно равно : Pm/M = — e/2m. Вследствие вращения вокруг

ядра эл-н оказывается подобным волчку. Это обстоятельство лежит в основе

так называемых магнитомеханических явлений, заключающихся в том, что

намагничивание магнетика приводит к его вращению и, наоборот, вращение

магнетика вызывает его намагничивание.

Опыт Энштейна-Де Хааса.

если намагнититьстержень из магнетика, то магнитные моменты электронов установятся понаправлению поля, а механич. моменты — против. В результате суммарный

механический момент эл-нов станет отличным от нуля. Момент импульса системы

стержень-электроны должен остаться без изменений. Поэтому стержень

преобретает момент импульса и следовательно приходит во вращение. Изменение

направления намагниченности приведет к изменению направления вращения

стержня. Опыт Эйнштейна и де Хааза осуществлялся следующим образом : тонкий

железный стержень подвешивали на упругой нити и помещали внутрь соленоида.

Закручивание нити при намагничивании стержня постоянным м.п. получалось

весьма малым. Для усиления эффекта был применен метод резонанса — соленоид

питался переменным током, частота к-рого подбиралась равной собственной

частоте механич. колебаний системы.

Магнето́н Бо́ра — единица элементарного магнитного момента.

Данная величина названа в честь Нильса Бора.

Магнетон Бора определяется как (или из учебника M(мю)= eh/4Пm=9,27*10вминус24 А*м вквадрате)

(на всякий случай магн. момент это — основная величина, характеризующая магнитные свойства вещества.

В случае плоского контура с электрическим током магнитный момент вычисляется как

, где I — сила тока в контуре, S — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика, Для произвольного замкнутого контура магнитный момент находится из:,где — радиус-вектор, проведенный из начала координат до элемента длины контура

В общем случае произвольного распределения токов в среде:

, где — плотность тока в элементе объёма dV.)

Гиромагни́тное отноше́ние (магнитомехани́ческое отноше́ние) — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту. Г= Р/L(маленькое) (P- магн момент,L- механич момент)

Ссылка на основную публикацию
Схема бп fsp350 60evf
Внимание! Все работы с силовыми цепями необходимо проводить соблюдая технику безопасности! В сети интернет можно найти очень много описаний и...
Сообщение на тему жесткий диск по информатике
Информатика Основным устройством хранения информации в компьютерной системе является жесткий диск. Большой объем и энергонезависимость сделали его наиболее пригодным для...
Сообщение о выигрыше айфона
Да, почти всегда это обман и развод на деньги. Те, кто проводит ВКонтакте, Инстаграме и других соцсетях «конкурсы», «розыгрыши айфонов»,...
Схема включения синхронного генератора
Цель работы: целью лабораторной работы является изучение методов подключения генератора к системе методом точной синхронизации в ручном режиме. При подключении...
Adblock detector