Стандартная ошибка регрессии в excel

Стандартная ошибка регрессии в excel

Пакет MS Excel позволяет при построении уравнения линейной регрессии большую часть работы сделать очень быстро. Важно понять, как интерпретировать полученные результаты.

Для работы необходима надстройка Пакет анализа, которую необходимо включить в пункте меню СервисНадстройки

В Excel 2007 для включения пакета анализа надо нажать перейти в блок Параметры Excel, нажав кнопку в левом верхнем углу, а затем кнопку «Параметры Excel» внизу окна:

Далее в открывшемся списке нужно выбрать Надстройки, затем установить курсор на пункт Пакет анализа, нажать кнопку Перейти и в следующем окне включить пакет анализа.

Для построения модели регрессии необходимо выбрать пункт СервисАнализ данныхРегрессия. (В Excel 2007 этот режим находится в блоке Данные/Анализ данных/ Регрессия). Появится диалоговое окно, которое нужно заполнить:

1) Входной интервал Y ¾ содержит ссылку на ячейки, которые содержат значения результативного признака y. Значения должны быть расположены в столбце;

2) Входной интервал X ¾ содержит ссылку на ячейки, которые содержат значения факторов . Значения должны быть расположены в столбцах;

3) Признак Метки ставится, если первые ячейки содержат пояснительный текст (подписи данных);

4) Уровень надежности ¾ это доверительная вероятность, которая по умолчанию считается равной 95%. Если это значение не устраивает, то нужно включить этот признак и ввести требуемое значение;

5) Признак Константа-ноль включается, если необходимо построить уравнение, в котором свободная переменная ;

6) Параметры вывода определяют, куда должны быть помещены результаты. По умолчанию строит режим Новый рабочий лист;

7) Блок Остатки позволяет включать вывод остатков и построение их графиков.

В результате выводится информация, содержащая все необходимые сведения и сгруппированная в три блока: Регрессионная статистика, Дисперсионный анализ, Вывод остатка. Рассмотрим их подробнее.

1. Регрессионная статистика:

множественный R определяется формулой (коэффициент корреляции Пирсона);

R-квадрат вычисляется по формуле (коэффициент детерминации);

Нормированный R-квадрат вычисляется по формуле (используется для множественной регрессии);

Стандартная ошибка S вычисляется по формуле ;

Наблюдения ¾ это количество данных n.

2. Дисперсионный анализ, строка Регрессия:

Параметр df равен m (количество наборов факторов x);

Параметр SS определяется формулой ;

Параметр MS определяется формулой ;

Статистика F определяется формулой ;

Значимость F. Если полученное число превышает , то принимается гипотеза (нет линейной взаимосвязи), иначе принимается гипотеза (есть линейная взаимосвязь).

3. Дисперсионный анализ, строка Остаток:

Параметр df равен ;

Параметр SS определяется формулой ;

Параметр MS определяется формулой .

4. Дисперсионный анализ, строка Итого содержит сумму первых двух столбцов.

5. Дисперсионный анализ, строка Y-пересечение содержит значение коэффициента , стандартной ошибки и t-статистики .

P-значение ¾ это значение уровней значимости, соответствующее вычисленным t-статистикам. Определяется функцией СТЬЮДРАСП(t-статистика; ). Если P-значение превышает , то соответствующая переменная статистически незначима и ее можно исключить из модели.

Читайте также:  Как пользоваться creehack на андроид

Нижние 95% и Верхние 95% ¾ это нижние и верхние границы 95-процентных доверительных интервалов для коэффициентов теоретического уравнения линейной регрессии. Если в блоке ввода данных значение доверительной вероятности было оставлено по умолчанию, то последние два столбца будут дублировать предыдущие. Если пользователь ввел свое значение доверительной вероятности, то последние два столбца содержат значения нижней и верхней границы для указанной доверительной вероятности.

6. Дисперсионный анализ, строки содержат значения коэффициентов, стандартных ошибок, t-статистик, P-значений и доверительных интервалов для соответствующих .

7. Блок Вывод остатка содержит значения предсказанного y (в наших обозначениях это ) и остатки .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8755 — | 8287 — или читать все.

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

    Перемещаемся во вкладку «Файл».

Открывается окно параметров Excel. Переходим в подраздел «Надстройки».

В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк . В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

Читайте также:  Лучшие домашние ноутбуки 2018

    Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».

Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».

Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

После того, как все настройки установлены, жмем на кнопку «OK».

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Читайте также:  Где хранится резервная копия сообщений whatsapp

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Построение линейной регрессии, оценивание ее параметров и их значимости можно выполнить значительнее быстрей при использовании пакета анализа Excel (Регрессия). Рассмотрим интерпретацию полученных результатов в общем случае (k объясняющих переменных) по данным примера 3.6.

Вывод итогов
Регрессионная статистика
Множественный R 0,940
R-квадрат 0,884
Нормированный R – квадрат 0,868
Стандартная ошибка 22,87
Наблюдения

В таблице регрессионной статистики приводятся значения:

Множественный R – коэффициент множественной корреляции ;

Rквадрат – коэффициент детерминации R 2 ;

Нормированный Rквадрат – скорректированный R 2 с поправкой на число степеней свободы;

Стандартная ошибка– стандартная ошибка регрессии S;

Наблюдения –число наблюдений n.

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 28102,2 28102,2 53,69 0,00016
Остаток 3663,7 523,3
Итого

В таблице Дисперсионный анализприведены:

1. Столбец df — число степеней свободы, равное

для строки Регрессия df = k;

для строкиОстатокdf = nk – 1;

для строкиИтогоdf = n – 1.

2. Столбец SS –сумма квадратов отклонений, равная

для строки Регрессия ;

для строкиОстаток ;

для строкиИтого .

3. Столбец MSдисперсии, определяемые по формуле MS = SS/df:

для строки Регрессия – факторная дисперсия;

для строкиОстаток– остаточная дисперсия.

4. Столбец F – расчетное значение F-критерия, вычисляемое по формуле

5. Столбец Значимость F –значение уровня значимости, соответствующее вычисленной F-статистике.

Значимость F = FРАСП(F-статистика, df(регрессия), df(остаток)).

Если значимость F 2 статистически значим.

Коэффи-циенты Стандартная ошибка t-cта-тистика P-значение Нижние 95% Верхние 95%
Y 65,92 11,74 5,61 0,00080 38,16 93,68
X 0,107 0,014 7,32 0,00016 0,0728 0,142

В этой таблице указаны:

1. Коэффициенты– значения коэффициентов a, b.

2. Стандартная ошибка–стандартные ошибки коэффициентов регрессии Sa, Sb.

3. t-статистика – расчетные значения t-критерия, вычисляемые по формуле:

t-статистика = Коэффициенты / Стандартная ошибка.

4.Р-значение (значимость t)– это значение уровня значимости, соответствующее вычисленной t-статистике.

Р-значение = СТЬЮДРАСП(t-статистика, df(остаток)).

Если Р-значение 2 .

Величина R 2 = 0,884 означает, что фактором душевого дохода можно объяснить 88,4 % вариации (разброса) расходов на питание.

Значимость R 2 проверяется по F-тесту: значимость F = 0,00016 2 значим при 1 %-ном уровне, а тем более при 5 %-ном уровне значимости.

В случае парной линейной регрессии коэффициент корреляции можно определить как . Полученное значение коэффициента корреляции свидетельствует, что связь между расходами на питание и душевым доходом очень тесная.

Ссылка на основную публикацию
Сообщение на тему жесткий диск по информатике
Информатика Основным устройством хранения информации в компьютерной системе является жесткий диск. Большой объем и энергонезависимость сделали его наиболее пригодным для...
Слова содержащие приставку корень суффикс и окончание
Примеры разборов слов, у которых есть все основные морфемы: приставка, корень, суффикс, окончание. у бор к а у дивл ени...
Словарь для it специалистов
ykaneva 2018-04-09T16:54:33+00:00 September 13th, 2017 | Практика английского | 7 Comments 7 142,973 Сегодня день программиста. По этому поводу в...
Сообщение о выигрыше айфона
Да, почти всегда это обман и развод на деньги. Те, кто проводит ВКонтакте, Инстаграме и других соцсетях «конкурсы», «розыгрыши айфонов»,...
Adblock detector