Создайте массив из 100 элементов

Создайте массив из 100 элементов

Предположим, что программа работает с большим количеством однотипных данных. Скажем около ста разных целых чисел нужно обработать, выполнив над ними те или иные вычисления. Как вы себе представляете 100 переменных в программе? И для каждой переменной нужно написать одно и тоже выражение вычисления значения? Это очень неэффективно.

Есть более простое решение. Это использование такой структуры (типа) данных как массив. Массив представляет собой последовательность ячеек памяти, в которых хранятся однотипные данные. При этом существует всего одно имя переменной связанной с массивом, а обращение к конкретной ячейке происходит по ее индексу (номеру) в массиве.

Нужно четко понимать, что индекс ячейки массива не является ее содержимым. Содержимым являются хранимые в ячейках данные, а индексы только указывают на них. Действия в программе над массивом осуществляются путем использования имени переменной, связанной с областью данных, отведенной под массив.

Итак, массив – это именованная группа однотипных данных, хранящихся в последовательных ячейках памяти. Каждая ячейка содержит элемент массива. Элементы нумеруются по порядку, но необязательно начиная с единицы (хотя в языке программирования Pascal чаще всего именно с нее). Порядковый номер элемента массива называется индексом этого элемента.

Помним, все элементы определенного массива имеют один и тот же тип . У разных массивов типы данных могут различаться. Например, один массив может состоять из чисел типа integer , а другой – из чисел типа real .

Индексы элементов массива обычно целые числа, однако могут быть и символами, а также описываться другими порядковыми типами. Т.е. для индекса можно использовать тип, в котором определена дискретная последовательность значений, и все эти значения можно пересчитать по порядку. Индексировать можно как константами и переменными, так и выражениями, результат вычисления которых дает значение перечислимого типа.

Если индекс массива может приобретать все допустимые значения определенного перечислимого типа, то при описании массива возможно задание имени типа вместо границ изменения индекса. При этом границами индекса будут первое и последнее значения в описании типа индекса. Границы изменения индексов могут задаваться с помощью ранее объявленных констант. Рекомендуется предварительно объявлять тип массива в разделе описания типов.

Читайте также:  Как пользоваться программой commview for wifi

Массив можно создать несколькими способами.

Обращение к определенному элементу массива осуществляется путем указания имени переменной массива и в квадратных скобках индекса элемента.

Простой массив является одномерным . Он представляет собой линейную структуру.

В примере выделяется область памяти под массив из 11 символов. Их индексы от 1 до 11. В процессе выполнения программы пользователь вводит 11 любых символов (например, ‘q’, ’w’, ’e’, ’2’, ’t’, ’9’, ’u’, ’I’, ’I’, ’o’, ’p’), которые записываются в ячейки массива. Текущее значение переменной i в цикле for используется в качестве индекса массива. Второй цикл for отвечает за вывод элементов массива на экран.

Функция sizeof , примененная к имени массива или имени массивного типа, возвращает количество байтов, отводимое под массив.

23 апреля 2015 г.

Создать массив из 100 элементов в диапазоне от 0 до 100. Написать функцию, которая вычислить сумму всех элементов масссива, значения которых выше, чем среднее арифметическое всех элементов массива

setlocale(LC_ALL, "Russian");
void init(int A[], int size);
void out(int A[], int size);
int summ_sr(int A[], int size);

const int s = 100;
int arr[s];
int a;
do
<

В этой статье вы научитесь работать с массивами: объявлять, инициализировать и получать доступ к элементам

Содержание

Объявление массива в C/C++

В программировании часто встречается задача обработки множества экземпляров однотипных данных. Представьте себе ситуацию: мы провели опрос 100 человек и узнали их возраст. Чтобы сохранить собранные данные, вы можете создать целочисленный массив, содержащий 100 элементов:

В C++ массивы статичны: вы не сможете изменить размер или тип элементов после объявления.

Доступ к элементам массива

Вы можете получать доступ к элементам массива, используя индексы и оператор [] . Допустим, вы объявили массив marks , как показано ниже. К первому элементу можно обратиться выражением marks[0] , ко второму — выражением marks[1] , и так далее. Доступ всегда начинается с единицы, а индекс последнего элемента на единицу меньше размера массива.

Инициализация массива при объявлении

Можно инициализировать массив при объявлении. Для этого надо указать в списке столько значений, сколько вмещает массив, либо одно значение 0, чтобы заполнить массив нулями:

Читайте также:  В чем измеряется объем оперативной памяти

Обход элементов массива в цикле

Узнать число элементов в массиве можно функцией std::size. Обойти можно, используя цикл по индексам либо range-based for:

Неопределённое поведение: выход за границы (out of bounds)

Выход за пределы массива является неопределённым поведением (англ. undefined behavior). Нет гарантий, как поведёт себя программа в этом случае. Высока вероятность, что вы испортите память других переменных, но эффект может различаться в разных режимах компиляции:

Передача массива как параметра функции

Массив в стиле языка C хранит только указатель на начало и не хранит свой размер, что и создаёт сложность в передаче в функцию. Размер массива известен во время компиляции, но не известен во время выполнения. Поэтому передать размер можно несколькими не очень очевидными путями:

Динамически изменяемый массив

Обычные массивы имеют неизменный размер. Вы можете ввести вспомогательную переменную, которая бы хранила число реально используемых ячеек массива. Но и в этом случае вы не сможете использовать элементов больше, чем задано при компиляции в виде размера массива.

Так мог бы выглядеть имитация динамического массива:

Класс std::vector

Стандартная библиотека C++ содержит шаблонный класс vector, который работает как динамический массив произвольного размера. Размер может расти до тех пор, пока у операционной системы есть область памяти подходящего размера (вплоть до нескольких гигабайт).

Класс является шаблонным, то есть при объявлении переменной потребуется параметризовать шаблон класса vector типом элемента:

Использование вектора похоже на использование массива:

  • работает запрос элемента ages[index] , причём индексация так же начинается с нуля
  • при выходе за границы динамического массива так же возникает неопределённое поведение (англ. undefined behavior)
  • работает перебор элементов с помощью индексов, range-based for или итераторов
  • есть метод size для получения размера: ages.size()

Добавление элементов в конец массива

Для добавления существует два метода: push_back и emplace_back

  • push_back получает значение элемента и добавляет в конец
  • emplace_back работает сложнее: он получает параметры, необходимые конструктору элемента, и конструирует его прямо в конце массива
Читайте также:  Установка розеток в панели пвх

Вы можете практически всегда использовать push_back. Метод pop_back можно использовать для удаления элемента:

В документации std::vector можно прочитать о других методах.

Перемещение элементов в памяти при изменении массива

Динамический массив использует для хранения элементов динамическую память (так же известную как “куча”, англ. heap). При добавлении большого числа элементов динамический массив несколько раз перераспределяет память, поскольку выделенной ранее линейной области памяти уже не хватает для хранения всех элементов. Обычно при нехватке памяти под очередной элемент vector запрашивает новую область памяти в 1,5-2 раза больше предыдущей, перемещает в неё уже существующие элементы и добавляет в конец новый, а затем освобождает старую область памяти.

Если не сообразили, как это происходит, взгляните на картинку:

Новая область находится уже другом месте, потому что менеджер динамической памяти не мог просто взять и расширить старую область (ведь сразу за ней находилась чужая память). Поэтому все итераторы, ссылки и указатели на элементы могут стать некорректными после любого изменения массива!

Метод erase для удаления элементов из середины

Метод erase класса vector получает итератор и уничтожает элемент, на который итератор указывает:

Последствия перемещения элементов: ошибка в простом цикле с erase

Использование итератора, ссылки или указателя на элемент после перераспределения памяти в массиве является неопределённым поведением: скорее всего произойдёт падение программы либо будет пропущено несколько элементов коллекции. Это показано в примере ниже:

Если вы запустите этот код, вы можете увидеть что угодно. Скорее всего программа выведет 10 38 99 , хотя должна вывести 10 23 7 38 99 по замыслу автора.

Для решения этой проблемы метод erase возвращает новый, валидный итератор на элемент, следующий после удалённого. Если элемент был последним, erase вернёт итератор end. Учитывая это, мы можем исправить код, чтобы новое значение it либо получалось из erase, либо получалось путём инкремента:

Программа корректно напечатает 10 23 7 38 99 .

Ссылка на основную публикацию
Слова содержащие приставку корень суффикс и окончание
Примеры разборов слов, у которых есть все основные морфемы: приставка, корень, суффикс, окончание. у бор к а у дивл ени...
Системная плата ecs mcp61m m3
Средняя цена по России, руб: 3 877 Общие характеристики Производитель Фирма, которая произвела данную материнскую плату. ECS Форм-фактор Форм-фактор –...
Системное администрирование windows 10
Наверняка вы уже слышали, что сегодня официально выходит Windows 10 Creators Update. В этой статье мы решили быть на шаг...
Словарь для it специалистов
ykaneva 2018-04-09T16:54:33+00:00 September 13th, 2017 | Практика английского | 7 Comments 7 142,973 Сегодня день программиста. По этому поводу в...
Adblock detector