Сортировка простыми вставками pascal

Сортировка простыми вставками pascal

Сортировкой или упорядочением массива называется расположение его элементов по возрастанию (или убыванию). Если не все элементы различны, то надо говорить о неубывающем (или невозрастающем) порядке.

  • количество шагов алгоритма, необходимых для упорядочения;
  • количество сравнений элементов;
  • количество перестановок, выполняемых при сортировке.

Мы рассмотрим только три простейшие схемы сортировки.

Метод "пузырька"

По-видимому, самым простым методом сортировки является так называемый метод " пузырька ". Чтобы уяснить его идею, представьте , что массив (таблица) расположен вертикально. Элементы с большим значением всплывают вверх наподобие больших пузырьков. При первом проходе вдоль массива, начиная проход "снизу", берется первый элемент и поочередно сравнивается с последующими. При этом:

В результате наибольший элемент оказывается в самом верху массива.

Во время второго прохода вдоль массива находится второй по величине элемент, который помещается под элементом, найденным при первом проходе, т.е на вторую сверху позицию, и т.д.

Заметим, что при втором и последующих проходах, нет необходимости рассматривать ранее "всплывшие" элементы, т.к. они заведомо больше оставшихся. Другими словами, во время j -го прохода не проверяются элементы, стоящие на позициях выше j .

Теперь можно привести текст программы упорядочения массива M[1..N] :

begin
for j :=1 to N -1 do
for i :=1 to N — j do
if M[ i ] > M[ i +1] then
swap (M[ i ],M[ i +1])
end;

Стандартная процедура swap будет использоваться и в остальных алгоритмах сортировки для перестановки элементов (их тип мы уточнять не будем) местами:

procedure swap (var x,y: . );
var t: . ;
begin
t := x;
x := y;
y := t
end;

Заметим, что если массив M — глобальный, то процедура могла бы содержать только аргументы (а не результаты). Кроме того, учитывая специфику ее применения в данном алгоритме, можно свести число парметров к одному (какому?), а не двум.

Применение метода "пузырька" можно проследить здесь.

Сортировка вставками

Второй метод называется метод вставок ., т.к. на j -ом этапе мы "вставляем" j -ый элемент M[j] в нужную позицию среди элементов M[1] , M[2] ,. . ., M[j-1] , которые уже упорядочены. После этой вставки первые j элементов массива M будут упорядочены.
Сказанное можно записать следующим образом:

Чтобы сделать процесс перемещения элемента M[j] , более простым, полезно воспользоваться барьером: ввести "фиктивный" элемент M[0] , чье значение будет заведомо меньше значения любого из "реальных"элементов массива (как это можно сделать?). Мы обозначим это значение через —оо.

Читайте также:  Как переворачивать видео в windows media

Если барьер не использовать, то перед вставкой M[j] , в позицию i-1 надо проверить, не будет ли i=1 . Если нет, тогда сравнить M[j] ( который в этот момент будет находиться в позиции i ) с элементом M[i-1].

Описанный алгоритм имеет следующий вид:

begin
M[0] := -oo;
for j :=2 to N do
begin
i := j ;
while M[ i ] M[ i — 1] do
begin
swap (M[ i ],M[ i -1]);
i := i -1
end
end
end;

Процедура swap нам уже встречалась.

Сортировка посредством выбора

Идея сортировки с помощью выбора не сложнее двух предыдущих. На j -ом этапе выбирается элемент наименьший среди M[j] , M[j+1] ,. . ., M[N] (см. процедуру FindMin ) и меняется местами с элементом M[j] . В результате после j -го этапа все элементы M[j] , M[j+1] ,. . ., M[N] будут упорядочены.

Сказанное можно описать следующим образом:

нц для j от 1 до N-1
выбрать среди M[j] ,. . ., M[N] наименьший элемент и
поменять его местами с
M[j]
кц

begin
for j :=1 to N -1 do
begin
FindMin ( j , i );
swap (M[ j ],M[ i ])
end
end;

В программе, как уже было сказано, используется процедура FindMin , вычисляющая индекс lowindex элемента, наименьшего среди элементов массива с индексами не меньше, чем startindex :

procedure FindMin (start index : integer; var lowindex : integer );
var lowelem: . ;
u: integer;
begin
lowindex := start index ;
lowelem := M[startindex];
for u:= start index +1 to N do
if M[u] lowelem then
begin
lowelem := M[u];
lowindex := u
end
end;

Оценивая эффективность применения , учтите что в демонстрации сортировки выбором отсутствует пошаговое выполнение этой процедуры.

Алгоритмы сортировки массивов

Сортировка данных это процесс изменения порядка расположения элементов в некоторых упорядоченных структурах данных таким образом, чтобы обеспечить возрастание или убывание числового значения элемента данных или определенного числового параметра, связанного с каждым элементом данных (ключа), при переходе от предыдущего элемента к последующему.

Для переменных символьного типа понятия "возрастание" и "убывание" относятся к значениям машинного кода, используемого для представления символов в памяти компьютера. Так как все буквенные символы располагаются в таблице кодов по алфавиту, то сортировка слов текста всегда приводит к их упорядочению в алфавитной последовательности.

Читайте также:  Почему тормозит курсор мыши на компьютере

Существует много алгоритмов, обеспечивающих решение задачи сортировки. Наиболее известными являются следующие:
— метод сортировки обменами ("пузырьковая" сортировка);
— метод сортировки вставками;
— метод сортировки выбором элемента;

Алгоритмы и программы сортировки

Алгоритм сортировки обменами ("пузырьковая" сортировка)
Метод "пузырька" один из самых простых методов внутренней сортировки. Суть алгоритма состоит в последовательном просмотре массива от конца к началу или от начала к концу и сравнении каждой пары элементов между собой. При этом "неправильное" расположение элементов устраняется путем их перестановки. Процесс просмотра и сравнения элементов повторяется до просмотра всего массива. При сортировке по возрастанию "легкие" элементы с меньшим значением как бы "всплывают" к началу массива подобно тому, как это делают пузырьки воздуха в стакане с водой — отсюда и происходит популярное название алгоритма.

Procedure Puzirek;
Var i, j: Integer;
y:Integer;
Begin
For i := 2 to n do
For j := n downto i do
If X[j-1] > X[j] then begin y:=X[j-1];
X[j-1]:=X[j];
X[j]:=y
end;
End;

Алгоритм сортировки вставками
Метод сортировки вставками заключается в переборе всех элементов массива от первого до последнего и вставке каждого очередного элемента на место среди предшествующих ему элементов, упорядоченных ранее таким же способом. Поскольку процесс начинается с самого первого элемента, то последовательность упорядоченных элементов постепенно растет до тех пор, пока самый последний элемент не встанет на "свое" место. Освобождение места для вставки элемента осуществляется путем соответствующего сдвига группы элементов.

Procedure Vstavka;
Var Z, Y, i, j: Integer;
Begin
For i := 2 to n do
For j := 1 to i-1 do
If X[j] > X[i] then
begin
Z := X[i];
For Y := i downto j+1 do X[Y] := X[Y-1];
X[j] := Z
end
End;

Алгоритм сортировки выбором элемента
В массиве необходимо найти элемент с минимальным значением и поменять его местами с первым элементом массива (для сортировки по убыванию — это необходимо сделать с максимальным элементом). После этого элемент с минимальным значением отыскивается среди всех элементов, кроме первого, и меняется значениями со вторым элементом массива и т.д. В результате все элементы выстраиваются по порядку.

Procedure Vibor;
Var r, i, j: Integer;
Begin
For i := 1 to n-1 do
begin
r := i;
For j := i+1 to n do If a[r] > a[j] then r := j;
Y:=a[r]; a[r]:=a[i]; a[i]:=Y;
end
End;

Сортировка вставками – простой алгоритм сортировки, преимущественно использующийся в учебном программировании. К положительной стороне метода относится простота реализации, а также его эффективность на частично упорядоченных последовательностях, и/или состоящих из небольшого числа элементов. Тем не менее, высокая вычислительная сложность не позволяет рекомендовать алгоритм в повсеместном использовании.

Читайте также:  Телефон самсунг джей 3 2017 года

Рассмотрим алгоритм сортировки вставками на примере колоды игральных карт. Процесс их упорядочивания по возрастанию (в колоде карты расположены в случайном порядке) будет следующим. Обратим внимание на вторую карту, если ее значение меньше первой, то меняем эти карты местами, в противном случае карты сохраняют свои позиции, и алгоритм переходит к шагу 2. На 2-ом шаге смотрим на третью карту, здесь возможны четыре случая отношения значений карт:

  1. первая и вторая карта меньше третьей;
  2. первая и вторая карта больше третьей;
  3. первая карта уступает значением третьей, а вторая превосходит ее;
  4. первая карта превосходит значением третью карту, а вторая уступает ей.

В первом случае не происходит никаких перестановок. Во втором – вторая карта смещается на место третьей, первая на место второй, а третья карта занимает позицию первой. В предпоследнем случае первая карта остается на своем месте, в то время как вторая и третья меняются местами. Ну и наконец, последний случай требует рокировки лишь первой и третьей карт. Все последующие шаги полностью аналогичны расписанным выше.

Рассмотрим на примере числовой последовательности процесс сортировки методом вставок. Клетка, выделенная темно-серым цветом – активный на данном шаге элемент, ему также соответствует i-ый номер. Светло-серые клетки это те элементы, значения которых сравниваются с i-ым элементом. Все, что закрашено белым – не затрагиваемая на шаге часть последовательности.

Ниже на анимированном изображении показан еще один пример работы алгоритма сортировки вставками. Здесь, как и в предыдущем примере, последовательность сортируется по возрастанию.

Таким образом, получается, что на каждом этапе выполнения алгоритма сортируется некоторая часть массива, размер которой с шагом увеличивается, и в конце сортируется весь массив целиком.

Ссылка на основную публикацию
Сообщение на тему жесткий диск по информатике
Информатика Основным устройством хранения информации в компьютерной системе является жесткий диск. Большой объем и энергонезависимость сделали его наиболее пригодным для...
Слова содержащие приставку корень суффикс и окончание
Примеры разборов слов, у которых есть все основные морфемы: приставка, корень, суффикс, окончание. у бор к а у дивл ени...
Словарь для it специалистов
ykaneva 2018-04-09T16:54:33+00:00 September 13th, 2017 | Практика английского | 7 Comments 7 142,973 Сегодня день программиста. По этому поводу в...
Сообщение о выигрыше айфона
Да, почти всегда это обман и развод на деньги. Те, кто проводит ВКонтакте, Инстаграме и других соцсетях «конкурсы», «розыгрыши айфонов»,...
Adblock detector