Сложение и умножение матриц примеры

Сложение и умножение матриц примеры

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц, у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов. С = А + В cij = aij + bij Аналогично определяется разность матриц.

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что

bij = k × aij. В = k × A bij = k × aij. Матрица — А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами: 1. А + В = В + А; 2. А + (В + С) = (А + В) + С; 3. А + 0 = А; 4. А — А = 0; 5. 1 × А = А; 6. α × (А + В) = αА + αВ; 7. (α + β) × А = αА + βА; 8. α × (βА) = (αβ) × А; , где А, В и С — матрицы, α и β — числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы. Произведением матрицы Аm×n на матрицу Вn×p, называется матрица Сm×p такая, что сik = ai1 × b1k + ai2 × b2k + . + ain × bnk, т. е. находиться сумма произведений элементов i — ой строки матрицы А на соответствующие элементы j — ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица, Е — единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких — либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка. А × Е = Е × А = А

Умножение матриц обладает следующими свойствами: 1. А × (В × С) = (А × В) × С; 2. А × (В + С) = АВ + АС; 3. (А + В) × С = АС + ВС; 4. α × (АВ) = (αА) × В; 5. А × 0 = 0; 0 × А = 0; 6. (АВ) Т = В Т А Т ; 7. (АВС) Т = С Т В Т А Т ; 8. (А + В) Т = А Т + В Т ;

Данное методическое пособие поможет Вам научиться выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>>.

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами.

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов:

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами.

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Читайте также:  Программы для игры на электрогитаре через компьютер

Теперь переходим непосредственно к изучению действий с матрицами:

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу).

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак:

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок.

2) Действие второе. Умножение матрицы на число.

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО:

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать, мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка.

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы.

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц.

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц.

Чем дальше в лес, тем толще партизаны. Скажу сразу, правило умножения матриц выглядит очень странно, и объяснить его не так-то просто, но я все-таки постараюсь это сделать, используя конкретные примеры.

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

, значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

, следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Как умножить матрицы?

Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей.

Начнем с самого простого:

Умножить матрицу на матрицу
Я буду сразу приводить формулу для каждого случая:

– попытайтесь сразу уловить закономерность.

Умножить матрицу на матрицу

Формула:

В результате получена так называемая нулевая матрица.

Попробуйте самостоятельно выполнить умножение (правильный ответ ).

Обратите внимание, что ! Это почти всегда так!

Таким образом, при умножении переставлять матрицы нельзя!

Если в задании предложено умножить матрицу на матрицу , то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.

Читайте также:  Грибок в виде черных точек

Переходим к матрицам третьего порядка:

Умножить матрицу на матрицу

Формула очень похожа на предыдущие формулы:

А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:

Умножьте матрицу на матрицу

Вот готовое решение, но постарайтесь сначала в него не заглядывать!

Данная тема достаточно обширна, и я вынес этот пункт на отдельную страницу.

А пока спектакль закончен.

После освоения начального уровня рекомендую отработать действия с матрицами на уроке Свойства операций над матрицами. Матричные выражения.

Автор: Емелин Александр

(Переход на главную страницу)

Профессиональная помощь по любому предмету – Zaochnik.com

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы "Матрицы. Виды матриц. Основные термины".

Сложение и вычитание матриц.

Аналогичное определение вводят и для разности матриц:

Запись "$i=overline<1,m>$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=overline<1,5>$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц – операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Заданы три матрицы:

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами – размер матрицы $A$ равен $2 imes 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=left(egin -1 & -2 & 1 \ 5 & 9 & -8 end
ight)+ left(egin
10 & -25 & 98 \ 3 & 0 & -14 end
ight)=\= left(egin
-1+10 & -2+(-25) & 1+98 \ 5+3 & 9+0 & -8+(-14) end
ight)= left(egin
9 & -27 & 99 \ 8 & 9 & -22 end
ight) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=left(egin -1 & -2 & 1 \ 5 & 9 & -8 end
ight)- left(egin
10 & -25 & 98 \ 3 & 0 & -14 end
ight)=\= left(egin
-1-10 & -2-(-25) & 1-98 \ 5-3 & 9-0 & -8-(-14) end
ight)= left(egin
-11 & 23 & -97 \ 2 & 9 & 6 end
ight) $$

Ответ: $C=left(egin 9 & -27 & 99 \ 8 & 9 & -22 end
ight)$, $D=left(egin
-11 & 23 & -97 \ 2 & 9 & 6 end
ight)$.

Умножение матрицы на число.

Попросту говоря, умножить матрицу на некое число – означает умножить каждый элемент заданной матрицы на это число.

Задана матрица: $ A=left(egin -1 & -2 & 7 \ 4 & 9 & 0 end
ight)$. Найти матрицы $3cdot A$, $-5cdot A$ и $-A$.

$$ 3cdot A=3cdot left(egin -1 & -2 & 7 \ 4 & 9 & 0 end
ight) =left(egin
3cdot(-1) & 3cdot(-2) & 3cdot 7 \ 3cdot 4 & 3cdot 9 & 3cdot 0 end
ight)= left(egin
-3 & -6 & 21 \ 12& 27 & 0 end
ight).\ -5cdot A=-5cdot left(egin
-1 & -2 & 7 \ 4 & 9 & 0 end
ight) =left(egin
-5cdot(-1) & -5cdot(-2) & -5cdot 7 \ -5cdot 4 & -5cdot 9 & -5cdot 0 end
ight)= left(egin
5 & 10 & -35 \ -20 & -45 & 0 end
ight). $$

Запись $-A$ есть сокращенная запись для $-1cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1cdot A=-1cdot left(egin -1 & -2 & 7 \ 4 & 9 & 0 end
ight)= left(egin
1 & 2 & -7 \ -4 & -9 & 0 end
ight) $$

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными). Например, матрицу $A_<5 imes 4>$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_<9 imes 8>$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4
eq 9$. А вот умножить матрицу $A_<5 imes 4>$ на матрицу $B_<4 imes 9>$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_<5 imes 4>$ и $B_<4 imes 9>$ будет матрица $C_<5 imes 9>$, содержащая 5 строк и 9 столбцов:

Читайте также:  Причины поломки процессора компьютера

Заданы матрицы: $ A=left(egin -1 & 2 & -3 & 0 \ 5 & 4 & -2 & 1 \ -8 & 11 & -10 & -5 end
ight)$ и $ B=left(egin
-9 & 3 \ 6 & 20 \ 7 & 0 \ 12 & -4 end
ight)$. Найти матрицу $C=Acdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3 imes 4$, а матрица $B$ имеет размер $4 imes 2$, то размер матрицы $C$ таков: $3 imes 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=left(egin c_ <11>& c_ <12>\ c_ <21>& c_ <22>\ c_ <31>& c_ <32>end
ight)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины", в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_<11>$. Чтобы получить элемент $c_<11>$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_<11>$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_<11>=-1cdot (-9)+2cdot 6+(-3)cdot 7 + 0cdot 12=0. $$

Продолжим решение и найдем $c_<12>$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_<12>=-1cdot 3+2cdot 20+(-3)cdot 0 + 0cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_<21>$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

Следующий элемент $c_<22>$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_<22>=5cdot 3+4cdot 20+(-2)cdot 0 + 1cdot (-4)=91. $$

Чтобы найти $c_<31>$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_<31>=-8cdot (-9)+11cdot 6+(-10)cdot 7 + (-5)cdot 12=8. $$

И, наконец, для нахождения элемента $c_<32>$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_<32>=-8cdot 3+11cdot 20+(-10)cdot 0 + (-5)cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=left(egin 0 & 37 \ -23 & 91 \ 8 & 216 end
ight)$. Или, если уж писать полностью:

$$ C=Acdot B =left(egin -1 & 2 & -3 & 0 \ 5 & 4 & -2 & 1 \ -8 & 11 & -10 & -5 end
ight)cdot left(egin
-9 & 3 \ 6 & 20 \ 7 & 0 \ 12 & -4 end
ight)=left(egin
0 & 37 \ -23 & 91 \ 8 & 216 end
ight). $$

Ответ: $C=left(egin 0 & 37 \ -23 & 91 \ 8 & 216 end
ight)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

$$ left(egin 6 & 3 \ -17 & -2 end
ight)cdot left(egin
4 & 9 \ -6 & 90 end
ight) =left(egin
6cdot<4>+3cdot(-6) & 6cdot<9>+3cdot <90>\ -17cdot<4>+(-2)cdot(-6) & -17cdot<9>+(-2)cdot <90>end
ight) =left(egin
6 & 324 \ -56 & -333 end
ight) $$

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $Acdot B
eq Bcdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $Acdot B=Bcdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)cdot A=Ycdot A$.

Транспонированная матрица.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка – станет первый столбец; была вторая строка – станет второй столбец; была третья строка – станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_<3 imes 5>$:

Соответственно, если исходная матрица имела размер $3 imes 5$, то транспонированная матрица имеет размер $5 imes 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $alpha$, $eta$ – некоторые числа, а $A$, $B$, $C$ – матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(alpha+eta)cdot A=alpha A+eta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $alphacdot(A+B)=alpha A+alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(alphaeta)A=alpha(eta A)$
  7. $Acdot (B+C)=AB+AC$, $(B+C)cdot A=BA+CA$.
  8. $Acdot E=A$, $Ecdot A=A$, где $E$ – единичная матрица соответствующего порядка.
  9. $Acdot O=O$, $Ocdot A=O$, где $O$ – нулевая матрица соответствующего размера.
  10. $left(A^T
    ight)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^Tcdot A^T$
  13. $left(alpha A
    ight)^T=alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.

Ссылка на основную публикацию
Слова содержащие приставку корень суффикс и окончание
Примеры разборов слов, у которых есть все основные морфемы: приставка, корень, суффикс, окончание. у бор к а у дивл ени...
Системная плата ecs mcp61m m3
Средняя цена по России, руб: 3 877 Общие характеристики Производитель Фирма, которая произвела данную материнскую плату. ECS Форм-фактор Форм-фактор –...
Системное администрирование windows 10
Наверняка вы уже слышали, что сегодня официально выходит Windows 10 Creators Update. В этой статье мы решили быть на шаг...
Словарь для it специалистов
ykaneva 2018-04-09T16:54:33+00:00 September 13th, 2017 | Практика английского | 7 Comments 7 142,973 Сегодня день программиста. По этому поводу в...
Adblock detector