Фото литий ионных аккумуляторов

Фото литий ионных аккумуляторов

Разместил 17.11.2018 nik34
nik34 прислал:


Характеристики литиевых аккумуляторов могу существенно различаться. В статье рассмотрены шесть основных типов таких аккумуляторов.
Статья скопирована с сайта Best-Energy, где есть много другой качественной информации по теме электропитания.

Рассмотрены следующие типы литиевых аккумуляторов.

1. Литий-кобальтовый аккумулятор ( LiCoO2)
2. Литий-марганцевый аккумулятор (LiMn2O4)
3. Литий-никель-марганец-кобальт-оксидный аккумулятор (LiNiMnCoO2 или NMC)
4. Литий-железо-фосфатный аккумулятор (LiFePO4)
5. Литий-никель-кобальт-алюминий-оксидный аккумулятор (LiNiCoAlO2)
6. Литий-титанатный аккумулятор (Li4Ti5O12)

Разные подвиды литий-ионной электрохимической системы именуются по типу своего активного вещества, и могут обозначаться как полностью словами, так и в укороченном виде — химическими формулами. Объединяется литиевые аккумуляторы то, что все они относятся к герметичным необслуживаемым аккумуляторам . Такие формулы не очень удобны для прочтения или запоминания ввиду своей сложности, поэтому и они упрощаются — к буквенной аббревиатуре.

Рисунок 1: Структура литий-кобальтового аккумулятора.

Гексагональный график (рисунок 2) суммирует производительность литий-кобальтового аккумулятора с точки зрения таких характеристик — удельная энергоемкость, которая отвечает за время работы; удельная мощность, или способность обеспечить большую силу тока; безопасность; производительность при высоких и низких температурах; срок службы и долговечность; стоимость. Другими важными характеристиками, не учтенными на этом графике, являются токсичность, возможность быстрой зарядки, саморазряд и срок возможного хранения. (Смотрите: Принцип “восьмигранной” батареи — что делает батарею батареей ).

Рисунок 2: Оценка усредненного литий-кобальтового аккумулятора.

Литий-кобальтовая электрохимическая система выделяется высокой удельной энергоемкостью, но предлагает средние показатели удельной мощности, безопасности и срока службы.

Таблица характеристик литий-кобальтового аккумулятора.

Кобальтит лития: LiCoO2 катод (

60% кобальта), графитовый анод
Сокращенное обозначение: LCO или Li-кобальт
Разработан в 1991 году

Напряжение 3,60 В номинальное; стандартный рабочий диапазон — 3,0-4,2 В
Удельная энергоемкость 150-200 Вт*ч/кг; специализированные модели обеспечивают до 240 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, напряжение зарядки 4,20 В (большинство моделей); процесс
зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает
срок службы батареи
С-рейтинг разряда 1С; при напряжении ниже 2,50 В срабатывает отсекатель; разряд силой тока выше 1С сокращает срок службы батареи
Количество циклов заряда/разряда 500-1000, зависит от глубины разрядов, нагрузки, температур
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Мобильные телефоны, планшеты, ноутбуки, фотоаппараты
Комментарий Очень высокая удельная энергоемкость, ограниченная
удельная мощность. Высокая стоимость кобальта. Служит в областях, где требуется
большая емкость. Имеет стабильный спрос на рынке.

Устройство литий-ионного аккумулятора с марганцевой шпинелью было впервые опубликовано в журнале “Materials Research Bulletin” в 1983 году. В 1996 году компания Moli Energy коммерциализировала литий-ионную ячейку с литий-марганцевой шпинелью в качестве материала катода. Трехмерная структура шпинели улучшает поток ионов на электроде, что приводит к уменьшению внутреннего сопротивления и улучшению обработки тока. Еще одним преимуществом шпинели является высокая термическая стабильность, но срок жизни и количество циклов ограничены.

Низкое внутреннее сопротивление такой ячейки обеспечивает быструю зарядку и высокое возможное значение силы тока разряда. В типоразмере 18650 литий-марганцевый аккумулятор может разряжаться силой тока в 20-30А с умеренным теплообразованием. Кроме того, он способен выдерживать импульсы до 50 А в течение одной-двух секунд. Непрерывная же нагрузка в 50 А приведет к нагреву аккумулятора, который не должен превышать 80°С во избежание деградации. Литий-марганцевые аккумуляторы используются для мощных инструментов, медицинского оборудования, а также в гибридном и электротранспорте.
На рисунке 4 представлена графическая иллюстрация трехмерного кристаллического каркаса материала катода. Этим материалом является шпинель, у которой начальная ромбовидная решеточная структура трансформируется в трехмерную.

Рисунок 4: Структура литий-марганцевого аккумулятора.

Емкость литий-марганцевого аккумулятора примерно на треть меньше емкости литий-кобальтового. Гибкость конструкции позволяет оптимизировать батарею под разные задачи и создавать модели с улучшенными показателями долговечности, удельной мощности или удельной энергоемкости. Например, версия в типоразмере 18650 с улучшенными показателями мощности имеет емкость только 1100 мАч, в то время как оптимизированная под емкость — 1500 мАч.

Рисунок 5: Характеристики обычного литий-марганцевого аккумулятора.

Несмотря на умеренную общую производительность, новые модели демонстрируют улучшенную удельную мощность, безопасность и продолжительность жизни.Большинство литий-марганцевых аккумуляторов комбинируются с литий-никель-марганец-кобальтовыми (NMC) для повышения удельной энергоемкости и продления срока службы. Этот союз позволяет использовать сильные стороны обеих систем и называется LMO (NMC). Именно эти комбинированные аккумуляторы используются в большинстве электромобилей, таких как Nissan Leaf, Chevy Volt и BMW i3. LMO – часть такого аккумулятора, которая составляет около 30 %, обеспечивает высокие ускорительные возможности электродвигателя, а NMC часть отвечает за размер автономного пробега.

Таблица характеристик литий-марганцевого аккумулятора.

Литий-марганцевая шпинель: LiMn2O4 катод, графитовый анод
Сокращенное обозначение: LNO или Li-марганцевый (шпинельная структура)
Разработан в 1996 году
Напряжение 3,70 В (3,80 В) номинальное; стандартный рабочий диапазон — 3.0-4.2 В
Удельная энергоемкость 100-150 Вт*ч/кг
С-рейтинг зарядки Стандарт 0,7-1С; 3С максимум; зарядка до 4,20 В (большинство батарей)
С-рейтинг разряда Стандарт 1С; существуют модели с 10С; импульсный режим работы (до 5 секунд) — 50С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 300-700 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 250°С. Полный заряд способствует тепловому пробою
Области применения Электроинструмент, медицинское оборудование, электрические силовые агрегаты
Комментарий Высокая мощность, но умеренная емкость; безопаснее литий-кобальтовых; обычно используется вместе с NMC

Одним из наиболее успешных вариантов исполнения литий-ионной электрохимической системы является сочетание никеля, марганца и кобальта (NMC) в катоде. По аналогии с литий-марганцевыми, эти системы могут быть оптимизированы под емкость или мощность. Например, NMC аккумулятор в типоразмере ячейки 18650 для умеренной нагрузки имеет емкость 2800 мАч и может обеспечивать силу тока в 4-5 А; а версия в том же типоразмере, но оптимизированная под мощностные показатели имеет емкость только 2000 мАч, но максимальная сила тока разряда у нее — 20 А. Показатель емкости можно увеличить и до 4000 мАч, если добавить кремний в состав анода. Но с другой стороны, это значительно уменьшит нагрузочные характеристики и долговечность такого аккумулятора. Столь неоднозначные свойства кремния появляются из-за его расширения и уменьшения при зарядке и разрядке, что приводит к механической неустойчивости конструкции аккумулятора.

Секрет технологии NMC заключается в сочетании никеля и марганца. Аналогией может служить обыкновенная поваренная соль, где по отдельности ее компоненты, натрий и хлор, весьма токсичны, но их соединение образует полезное пищевое вещество. Никель известен своей высокой удельной энергоемкостью, но низкой стабильностью; марганец же имеет преимущество в виде шпинельной структуры, которая обеспечивает низкое внутреннее сопротивление, но и приводит к недостатку — низкой удельной энергоемкости. Сочетание же этих металлов позволяет компенсировать недостатки друг друга и в полной мере использовать сильные стороны.

NMC аккумуляторы используются для мощных инструментов, электровелосипедов и других силовых агрегатов. Состав катода, как правило, сочетает никель, марганец и кобальт в равных частях, то есть каждый металл занимает треть от общего объема. Такое распределение также известно как 1-1-1. Сочетание в таком соотношении выгодно своей стоимостью, так как содержание дорогого кобальта по сравнению с другими версиями батареи относительно невелико. Еще одна успешная комбинация NMC содержит 5 частей никеля, 3 части кобальта и 2 части марганца. Эксперименты по поиску удачных комбинаций этих активных веществ продолжаются и сейчас. На рисунке 7 продемонстрированы характеристики NMC аккумулятора.

Рисунок 7: Оценка характеристик NMC аккумулятора.

NMC имеет хорошую общую производительность и отличную удельную энергоемкость. Данная аккумуляторная батарея является предпочтительным выбором для электротранспорта и имеет самый низкий уровень самонагрева.

Литий-никель-марганец-кобальт-оксид: LiNiMnCoO2 катод, графитовый анод
Сокращенное обозначение: NMC (NCM, CMN, CNM, MNC, MCN аналогично комбинации металлов)
Разработан в 2008 году
Напряжение 3,60-3,70 В номинальное; стандартный рабочий диапазон — 3,0-4,2 В на ячейку, или выше
Удельная энергоемкость 150-220 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, зарядка до 4,20 В, в некоторых моделях до 4,30 В; процесс
зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает
срок службы батареи
С-рейтинг разряда 1С; некоторые модели поддерживают 2С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 210°С. Полный заряд способствует тепловому пробою
Области применения Электровелосипеды, медицинское оборудование, электроавтомобили, промышленность
Комментарий Обеспечивают высокую емкость и мощность. Широкий спектр практического применения, доля рынка стремительно растет

В 1996 году в Университете Техаса были проведены исследования, в результате которых был открыт новый материал для катода литий-ионного аккумулятора — фосфат железа. Литий-фосфатная система обладает хорошими электрохимическими свойствами и низким внутренним сопротивлением.

Читайте также:  Колонки гениус для компьютера

Рисунок 9: Оценка характеристик литий-фосфатного аккумулятора.

Литий-фосфатная электрохимическая система обеспечивает отличную безопасность и долгий срок службы, но удельная энергоемкость имеет умеренные показатели, также стоит отметить высокий саморазряд.

Литий-феррофосфат: LiFePO4 катод, графитовый анод
Сокращенное обозначение: LFP или Li-фосфат
Напряжение 3,20, 3,30 В номинальное; стандартный рабочий диапазон — 2,5-3,65 В на ячейку
Удельная энергоемкость 90-120 Вт*ч/кг
С-рейтинг зарядки 1С стандарт, зарядка до 3,65 В; процесс зарядки обычно занимает 3 часа
С-рейтинг разряда 1С; в некоторых версиях до 25С; 40 А импульсные токи (до 2 секунд);
при 2,50 В срабатывает отсекатель (напряжение ниже 2 В наносит вред)
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой 270°С. Безопасный даже при полном заряде
Области применения Портативные и стационарные устройства, где необходимы высокие токи нагрузки и выносливость
Комментарий Очень ровный график разряда, но небольшая емкость. Один из самых
безопасных в семействе литий-ионных. Используется в специализированных
устройствах. Повышенный саморазряд.

Высокие показатели энергоемкости и плотности энергии вкупе с хорошей долговечностью делают NCA аккумуляторы интересными для электротранспорта. Но высокая стоимость и показатели безопасности являются недостатком этой электрохимической системы.

Таблица характеристик литий-никель-кобальт-алюминий-оксидного (NCA) аккумулятора.

Литий-никель-кобальт-алюминий-оксид: LiNiCoAlO2 катод (

9% кобальта), графитовый анод
Сокращенное обозначение: NCA или Li-алюминий

Напряжение 3,60 В номинальное; стандартный рабочий диапазон — 3,00-4,20 В на ячейку
Удельная энергоемкость 200-260 Вт*ч/кг, ожидается улучшение до 300 Вт*ч/кг
С-рейтинг зарядки 0,7С, зарядка до 4,20 В (большинство версий); процесс зарядки обычно
занимает 3 часа, для некоторых версий доступна быстрая зарядка
С-рейтинг разряда 1С стандарт; при 3,00 В срабатывает отсекатель; глубокие разряды укорачивают срок службы
Количество циклов заряда/разряда 500 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Медицинское оборудование, промышленность, электрические силовые агрегаты
Комментарий По характеристикам очень похож на литий-кобальтовый. В основном используется в устройствах, требующих высокие показатели емкости

Аккумуляторы с титанатом лития в составе известны еще с 1980-х. В классическом литий-ионном аккумуляторе анод графитовый, в рассматриваемом же — из нанокристаллов титаната лития. Графит присутствует в составе литий-титанатного аккумулятора, но уже в роли катода. У этого аккумулятора номинальное напряжение ячейки составляет 2,40 В, он может быть очень быстро заряжен и обеспечивает высокий ток разряда — 10С, то есть в 10 раз превышающий показатель его емкости. Количество циклов заряда/разряда больше, чем у обычного литий-ионного.

Литий-титанатный аккумулятор безопасен, имеет отличные низкотемпературные характеристики — при минус 30°С его емкость сохраняется на уровне 80%. Но стоимость такого аккумулятора высока, а показатель удельной энергоемкости в 65 Вт*ч/кг позволяет конкурировать разве что с никель-кадмиевым. Номинальное напряжение ячейки литий-титанатного аккумулятора составляет 2,80 В; работоспособным аккумулятор считается до значения 1,80 В. На рисунке 13 представлены характеристики литий-титанатного аккумулятора. Его типичные области применения – электрические силовые агрегаты, системы аккумулирования электроэнергии и уличное освещение на солнечных элементах.

Рисунок 13: Характеристики литий-титанатного аккумулятора.

Литий-титанатные аккумуляторы имеют отличные показатели безопасности, производительности при низких температурах и долговечности. Ведутся разработки по увеличению удельной энергоемкости и удешевлению производства.

Титанат Лития: графитовый катод, Li4Ti5O12 анод
Сокращенное обозначение: LTO или Li-титанат
Напряжение 2,40 В номинальное; стандартный рабочий диапазон — 1,80-2,75 В на ячейку
Удельная энергоемкость 70-80 Вт*ч/кг
С-рейтинг зарядки 1С номинальное; 5С максимальное; зарядка до 2,85 В
С-рейтинг разряда 10С допустимо; 30С импульс (5 секунд); при 1,80 В срабатывает отсекатель
Количество циклов заряда/разряда 3000-7000
Тепловой пробой Один из самых безопасных литий-ионных аккумуляторов
Области применения ИБП, электрические силовые агрегаты (Mitsubishi i-MiEV, Honda Fit-EV),уличное освещение на солнечных элементах
Комментарий Длительный срок службы, быстрая зарядка, широкий температурный
диапазон, но низкая удельная энергоемкость и высокая стоимость. Наиболее
безопасная литий-ионная аккумуляторная батарея.

Рисунок 15: Показатели удельной энергоемкости свинцовых, никелевых и литиевых аккумуляторных батарей.

NCA обладают самой высокой удельной энергоемкостью. Тем не менее, марганцевые и фосфатные превосходят по удельной мощности и термической стабильности. Литий-титанатные имеют наибольший срок службы.

Разместил 17.11.2018 nik34
nik34 прислал:


Характеристики литиевых аккумуляторов могу существенно различаться. В статье рассмотрены шесть основных типов таких аккумуляторов.
Статья скопирована с сайта Best-Energy, где есть много другой качественной информации по теме электропитания.

Рассмотрены следующие типы литиевых аккумуляторов.

1. Литий-кобальтовый аккумулятор ( LiCoO2)
2. Литий-марганцевый аккумулятор (LiMn2O4)
3. Литий-никель-марганец-кобальт-оксидный аккумулятор (LiNiMnCoO2 или NMC)
4. Литий-железо-фосфатный аккумулятор (LiFePO4)
5. Литий-никель-кобальт-алюминий-оксидный аккумулятор (LiNiCoAlO2)
6. Литий-титанатный аккумулятор (Li4Ti5O12)

Разные подвиды литий-ионной электрохимической системы именуются по типу своего активного вещества, и могут обозначаться как полностью словами, так и в укороченном виде — химическими формулами. Объединяется литиевые аккумуляторы то, что все они относятся к герметичным необслуживаемым аккумуляторам . Такие формулы не очень удобны для прочтения или запоминания ввиду своей сложности, поэтому и они упрощаются — к буквенной аббревиатуре.

Рисунок 1: Структура литий-кобальтового аккумулятора.

Гексагональный график (рисунок 2) суммирует производительность литий-кобальтового аккумулятора с точки зрения таких характеристик — удельная энергоемкость, которая отвечает за время работы; удельная мощность, или способность обеспечить большую силу тока; безопасность; производительность при высоких и низких температурах; срок службы и долговечность; стоимость. Другими важными характеристиками, не учтенными на этом графике, являются токсичность, возможность быстрой зарядки, саморазряд и срок возможного хранения. (Смотрите: Принцип “восьмигранной” батареи — что делает батарею батареей ).

Рисунок 2: Оценка усредненного литий-кобальтового аккумулятора.

Литий-кобальтовая электрохимическая система выделяется высокой удельной энергоемкостью, но предлагает средние показатели удельной мощности, безопасности и срока службы.

Таблица характеристик литий-кобальтового аккумулятора.

Кобальтит лития: LiCoO2 катод (

60% кобальта), графитовый анод
Сокращенное обозначение: LCO или Li-кобальт
Разработан в 1991 году

Напряжение 3,60 В номинальное; стандартный рабочий диапазон — 3,0-4,2 В
Удельная энергоемкость 150-200 Вт*ч/кг; специализированные модели обеспечивают до 240 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, напряжение зарядки 4,20 В (большинство моделей); процесс
зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает
срок службы батареи
С-рейтинг разряда 1С; при напряжении ниже 2,50 В срабатывает отсекатель; разряд силой тока выше 1С сокращает срок службы батареи
Количество циклов заряда/разряда 500-1000, зависит от глубины разрядов, нагрузки, температур
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Мобильные телефоны, планшеты, ноутбуки, фотоаппараты
Комментарий Очень высокая удельная энергоемкость, ограниченная
удельная мощность. Высокая стоимость кобальта. Служит в областях, где требуется
большая емкость. Имеет стабильный спрос на рынке.

Устройство литий-ионного аккумулятора с марганцевой шпинелью было впервые опубликовано в журнале “Materials Research Bulletin” в 1983 году. В 1996 году компания Moli Energy коммерциализировала литий-ионную ячейку с литий-марганцевой шпинелью в качестве материала катода. Трехмерная структура шпинели улучшает поток ионов на электроде, что приводит к уменьшению внутреннего сопротивления и улучшению обработки тока. Еще одним преимуществом шпинели является высокая термическая стабильность, но срок жизни и количество циклов ограничены.

Низкое внутреннее сопротивление такой ячейки обеспечивает быструю зарядку и высокое возможное значение силы тока разряда. В типоразмере 18650 литий-марганцевый аккумулятор может разряжаться силой тока в 20-30А с умеренным теплообразованием. Кроме того, он способен выдерживать импульсы до 50 А в течение одной-двух секунд. Непрерывная же нагрузка в 50 А приведет к нагреву аккумулятора, который не должен превышать 80°С во избежание деградации. Литий-марганцевые аккумуляторы используются для мощных инструментов, медицинского оборудования, а также в гибридном и электротранспорте.
На рисунке 4 представлена графическая иллюстрация трехмерного кристаллического каркаса материала катода. Этим материалом является шпинель, у которой начальная ромбовидная решеточная структура трансформируется в трехмерную.

Рисунок 4: Структура литий-марганцевого аккумулятора.

Емкость литий-марганцевого аккумулятора примерно на треть меньше емкости литий-кобальтового. Гибкость конструкции позволяет оптимизировать батарею под разные задачи и создавать модели с улучшенными показателями долговечности, удельной мощности или удельной энергоемкости. Например, версия в типоразмере 18650 с улучшенными показателями мощности имеет емкость только 1100 мАч, в то время как оптимизированная под емкость — 1500 мАч.

Рисунок 5: Характеристики обычного литий-марганцевого аккумулятора.

Несмотря на умеренную общую производительность, новые модели демонстрируют улучшенную удельную мощность, безопасность и продолжительность жизни.Большинство литий-марганцевых аккумуляторов комбинируются с литий-никель-марганец-кобальтовыми (NMC) для повышения удельной энергоемкости и продления срока службы. Этот союз позволяет использовать сильные стороны обеих систем и называется LMO (NMC). Именно эти комбинированные аккумуляторы используются в большинстве электромобилей, таких как Nissan Leaf, Chevy Volt и BMW i3. LMO – часть такого аккумулятора, которая составляет около 30 %, обеспечивает высокие ускорительные возможности электродвигателя, а NMC часть отвечает за размер автономного пробега.

Читайте также:  Приложение для создания анимации на телефон

Таблица характеристик литий-марганцевого аккумулятора.

Литий-марганцевая шпинель: LiMn2O4 катод, графитовый анод
Сокращенное обозначение: LNO или Li-марганцевый (шпинельная структура)
Разработан в 1996 году
Напряжение 3,70 В (3,80 В) номинальное; стандартный рабочий диапазон — 3.0-4.2 В
Удельная энергоемкость 100-150 Вт*ч/кг
С-рейтинг зарядки Стандарт 0,7-1С; 3С максимум; зарядка до 4,20 В (большинство батарей)
С-рейтинг разряда Стандарт 1С; существуют модели с 10С; импульсный режим работы (до 5 секунд) — 50С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 300-700 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 250°С. Полный заряд способствует тепловому пробою
Области применения Электроинструмент, медицинское оборудование, электрические силовые агрегаты
Комментарий Высокая мощность, но умеренная емкость; безопаснее литий-кобальтовых; обычно используется вместе с NMC

Одним из наиболее успешных вариантов исполнения литий-ионной электрохимической системы является сочетание никеля, марганца и кобальта (NMC) в катоде. По аналогии с литий-марганцевыми, эти системы могут быть оптимизированы под емкость или мощность. Например, NMC аккумулятор в типоразмере ячейки 18650 для умеренной нагрузки имеет емкость 2800 мАч и может обеспечивать силу тока в 4-5 А; а версия в том же типоразмере, но оптимизированная под мощностные показатели имеет емкость только 2000 мАч, но максимальная сила тока разряда у нее — 20 А. Показатель емкости можно увеличить и до 4000 мАч, если добавить кремний в состав анода. Но с другой стороны, это значительно уменьшит нагрузочные характеристики и долговечность такого аккумулятора. Столь неоднозначные свойства кремния появляются из-за его расширения и уменьшения при зарядке и разрядке, что приводит к механической неустойчивости конструкции аккумулятора.

Секрет технологии NMC заключается в сочетании никеля и марганца. Аналогией может служить обыкновенная поваренная соль, где по отдельности ее компоненты, натрий и хлор, весьма токсичны, но их соединение образует полезное пищевое вещество. Никель известен своей высокой удельной энергоемкостью, но низкой стабильностью; марганец же имеет преимущество в виде шпинельной структуры, которая обеспечивает низкое внутреннее сопротивление, но и приводит к недостатку — низкой удельной энергоемкости. Сочетание же этих металлов позволяет компенсировать недостатки друг друга и в полной мере использовать сильные стороны.

NMC аккумуляторы используются для мощных инструментов, электровелосипедов и других силовых агрегатов. Состав катода, как правило, сочетает никель, марганец и кобальт в равных частях, то есть каждый металл занимает треть от общего объема. Такое распределение также известно как 1-1-1. Сочетание в таком соотношении выгодно своей стоимостью, так как содержание дорогого кобальта по сравнению с другими версиями батареи относительно невелико. Еще одна успешная комбинация NMC содержит 5 частей никеля, 3 части кобальта и 2 части марганца. Эксперименты по поиску удачных комбинаций этих активных веществ продолжаются и сейчас. На рисунке 7 продемонстрированы характеристики NMC аккумулятора.

Рисунок 7: Оценка характеристик NMC аккумулятора.

NMC имеет хорошую общую производительность и отличную удельную энергоемкость. Данная аккумуляторная батарея является предпочтительным выбором для электротранспорта и имеет самый низкий уровень самонагрева.

Литий-никель-марганец-кобальт-оксид: LiNiMnCoO2 катод, графитовый анод
Сокращенное обозначение: NMC (NCM, CMN, CNM, MNC, MCN аналогично комбинации металлов)
Разработан в 2008 году
Напряжение 3,60-3,70 В номинальное; стандартный рабочий диапазон — 3,0-4,2 В на ячейку, или выше
Удельная энергоемкость 150-220 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, зарядка до 4,20 В, в некоторых моделях до 4,30 В; процесс
зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает
срок службы батареи
С-рейтинг разряда 1С; некоторые модели поддерживают 2С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 210°С. Полный заряд способствует тепловому пробою
Области применения Электровелосипеды, медицинское оборудование, электроавтомобили, промышленность
Комментарий Обеспечивают высокую емкость и мощность. Широкий спектр практического применения, доля рынка стремительно растет

В 1996 году в Университете Техаса были проведены исследования, в результате которых был открыт новый материал для катода литий-ионного аккумулятора — фосфат железа. Литий-фосфатная система обладает хорошими электрохимическими свойствами и низким внутренним сопротивлением.

Рисунок 9: Оценка характеристик литий-фосфатного аккумулятора.

Литий-фосфатная электрохимическая система обеспечивает отличную безопасность и долгий срок службы, но удельная энергоемкость имеет умеренные показатели, также стоит отметить высокий саморазряд.

Литий-феррофосфат: LiFePO4 катод, графитовый анод
Сокращенное обозначение: LFP или Li-фосфат
Напряжение 3,20, 3,30 В номинальное; стандартный рабочий диапазон — 2,5-3,65 В на ячейку
Удельная энергоемкость 90-120 Вт*ч/кг
С-рейтинг зарядки 1С стандарт, зарядка до 3,65 В; процесс зарядки обычно занимает 3 часа
С-рейтинг разряда 1С; в некоторых версиях до 25С; 40 А импульсные токи (до 2 секунд);
при 2,50 В срабатывает отсекатель (напряжение ниже 2 В наносит вред)
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой 270°С. Безопасный даже при полном заряде
Области применения Портативные и стационарные устройства, где необходимы высокие токи нагрузки и выносливость
Комментарий Очень ровный график разряда, но небольшая емкость. Один из самых
безопасных в семействе литий-ионных. Используется в специализированных
устройствах. Повышенный саморазряд.

Высокие показатели энергоемкости и плотности энергии вкупе с хорошей долговечностью делают NCA аккумуляторы интересными для электротранспорта. Но высокая стоимость и показатели безопасности являются недостатком этой электрохимической системы.

Таблица характеристик литий-никель-кобальт-алюминий-оксидного (NCA) аккумулятора.

Литий-никель-кобальт-алюминий-оксид: LiNiCoAlO2 катод (

9% кобальта), графитовый анод
Сокращенное обозначение: NCA или Li-алюминий

Напряжение 3,60 В номинальное; стандартный рабочий диапазон — 3,00-4,20 В на ячейку
Удельная энергоемкость 200-260 Вт*ч/кг, ожидается улучшение до 300 Вт*ч/кг
С-рейтинг зарядки 0,7С, зарядка до 4,20 В (большинство версий); процесс зарядки обычно
занимает 3 часа, для некоторых версий доступна быстрая зарядка
С-рейтинг разряда 1С стандарт; при 3,00 В срабатывает отсекатель; глубокие разряды укорачивают срок службы
Количество циклов заряда/разряда 500 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Медицинское оборудование, промышленность, электрические силовые агрегаты
Комментарий По характеристикам очень похож на литий-кобальтовый. В основном используется в устройствах, требующих высокие показатели емкости

Аккумуляторы с титанатом лития в составе известны еще с 1980-х. В классическом литий-ионном аккумуляторе анод графитовый, в рассматриваемом же — из нанокристаллов титаната лития. Графит присутствует в составе литий-титанатного аккумулятора, но уже в роли катода. У этого аккумулятора номинальное напряжение ячейки составляет 2,40 В, он может быть очень быстро заряжен и обеспечивает высокий ток разряда — 10С, то есть в 10 раз превышающий показатель его емкости. Количество циклов заряда/разряда больше, чем у обычного литий-ионного.

Литий-титанатный аккумулятор безопасен, имеет отличные низкотемпературные характеристики — при минус 30°С его емкость сохраняется на уровне 80%. Но стоимость такого аккумулятора высока, а показатель удельной энергоемкости в 65 Вт*ч/кг позволяет конкурировать разве что с никель-кадмиевым. Номинальное напряжение ячейки литий-титанатного аккумулятора составляет 2,80 В; работоспособным аккумулятор считается до значения 1,80 В. На рисунке 13 представлены характеристики литий-титанатного аккумулятора. Его типичные области применения – электрические силовые агрегаты, системы аккумулирования электроэнергии и уличное освещение на солнечных элементах.

Рисунок 13: Характеристики литий-титанатного аккумулятора.

Литий-титанатные аккумуляторы имеют отличные показатели безопасности, производительности при низких температурах и долговечности. Ведутся разработки по увеличению удельной энергоемкости и удешевлению производства.

Титанат Лития: графитовый катод, Li4Ti5O12 анод
Сокращенное обозначение: LTO или Li-титанат
Напряжение 2,40 В номинальное; стандартный рабочий диапазон — 1,80-2,75 В на ячейку
Удельная энергоемкость 70-80 Вт*ч/кг
С-рейтинг зарядки 1С номинальное; 5С максимальное; зарядка до 2,85 В
С-рейтинг разряда 10С допустимо; 30С импульс (5 секунд); при 1,80 В срабатывает отсекатель
Количество циклов заряда/разряда 3000-7000
Тепловой пробой Один из самых безопасных литий-ионных аккумуляторов
Области применения ИБП, электрические силовые агрегаты (Mitsubishi i-MiEV, Honda Fit-EV),уличное освещение на солнечных элементах
Комментарий Длительный срок службы, быстрая зарядка, широкий температурный
диапазон, но низкая удельная энергоемкость и высокая стоимость. Наиболее
безопасная литий-ионная аккумуляторная батарея.

Рисунок 15: Показатели удельной энергоемкости свинцовых, никелевых и литиевых аккумуляторных батарей.

NCA обладают самой высокой удельной энергоемкостью. Тем не менее, марганцевые и фосфатные превосходят по удельной мощности и термической стабильности. Литий-титанатные имеют наибольший срок службы.

На сегодняшний день практически у каждого в кармане находится телефон (смартфон, камерофон, планшет), способный переплюнуть по производительности ваш домашний десктоп, который вы уже несколько лет не обновляли. В каждом гаджете у вас стоит литий-полимерная батарея. Теперь вопрос: кто из читателей вспомнит точно, когда произошёл безвозвратный переход от «звонилок» к мультифункциональным устройствам?

Читайте также:  Бумер сорванные башни игра

Сложно… Надо напрягать память, вспоминать год покупки первого «умного» телефона. Для меня это примерно 2008-2010 год. На тот момент ёмкость литиевой батареи для обычного телефона составляла порядка 700 мАч, сейчас ёмкость батарей телефонов достигает 4 тысяч мАч.

Увеличение ёмкости в 6 раз, при том, что, грубо говоря, размер батареи увеличился всего в 2 раза.

Как мы уже рассказывали в нашей статье, литий-ионные решения для ИБП стремительно завоёвывают рынок, обладают рядом неоспоримых преимуществ и достаточно безопасны в эксплуатации (тем более в условиях серверной).

Друзья, сегодня попытаемся разобраться и сравнить решения на железо-литий-фосфатных батареях (LFP) и литий-марганцевых (LMO), изучить их достоинства и недостатки, сравнить между собой по ряду удельных показателей. Напомню, что оба вида батарей относятся к литий-ионным, литий-полимерным аккумуляторам, но отличаются химическим составом. Если вас заинтересовало продолжение, прошу под кат.

Перспективы литиевых технологий в области накопления энергии

Текущая ситуация в РФ на 2017 год представляла следующее.

кликабельно

С использованием источника: «Концепция развития систем хранения электроэнергии в РФ», Минэнерго РФ, 21 августа 2017 года.

Как видим, литий-ионная технология на тот момент находилась в лидерах приближения к промышленной технологии производства (подразумевалась в первую очередь LFP технология).

Далее посмотрим на тенденции в США, точнее, рассмотрим свежую версию документа:

Справка: АББМ – энергетические массивы для источников бесперебойного питания, которые используются в электроэнергетике для:

  • Резервирования электроэнергии для особо важных потребителей при перебоях в электроснабжении собственных нужд (СН) 0,4 кВ на подстанции (ПС).
  • Как «буферный» накопитель для альтернативных источников.
  • Компенсации дефицита мощности в режиме пикового потребления для разгрузки объектов генерации и передачи электричества.
  • Накопления энергии в течении суток во время её низкой стоимости (ночное время суток).

Как видим, Li-Ion технологии по состоянию на 2016 год прочно удерживали лидирующее положение и показывали стремительный кратный рост и по мощности (МВт), и по энергии (МВт*ч).

В этом же документе можем прочитать следующее:

«Литий-ионные технологии представляют более чем 80% добавленной мощности и энергии системами АББМ выработанной в США на конец 2016 года. Литий-ионные батареи имеют высокоэффективный цикл (заряда, прим. автора) и быстрее отдают накопленную мощность. В добавок ко всему, они имеют высокую плотность энергии (удельная мощность, прим. автора) и большие токи отдачи, что обусловило выбор их в качестве батарей для портативной электроники и электрических транспортных средств».

Попробуем сравнить две технологии литий-ионных аккумуляторов для ИБП

Сравнивать будем призматические ячейки, построенные на химии LMO и LFP. Именно эти две технологии (с вариациями типа LMO-NMC) сейчас являются основными промышленными образцами для различного электротранспорта, электромобилей.

Спросите, причём тут электротранспорт? Поясню: активное распространение электротранспорта на Li-Ion технологиях уже давно перешагнуло стадию опытных образцов. А как мы знаем, все новейшие технологии приходят к нам из дорогих, новейших сфер жизни. Например, масса автотехнологий пришла к нам из Формулы-1, множество новейших технологий вошло в нашу жизнь из космической сферы, и так далее… Поэтому, на наш взгляд, сейчас происходит проникновение литий-ионных технологий в промышленные решения.

Рассмотрим таблицу сравнения основных производителей, химии батарей и собственно автомобильных компаний, активно выпускающих электромобили (гибриды).

Выберем исключительно призматические ячейки, которые подходят под форм-фактор использования в ИБП. Как видим, литий-титанат (LTO-NMC) является аутсайдером по удельной запасённой энергии. Остаются три производителя призматических ячеек, пригодных для использования в промышленных решениях, в частности, в батареях для ИБП.

Приведу цитату и перевод из документа «Оценка жизненного цикла и длительности эксплуатации литиевых электродов для батарей электротранспорта — ячейки для LEAF, Tesla и автобусов VOLVO» (Оригинал «Life cycle assessment of long life lithium electrode for electric vehicle batteries- cell for LEAF, Tesla and Volvo bus» от 11 декабря 2017 года от Mats Zackrisson. Здесь исследуются большей частью химические процессы в батареях автотранспорта, влияние вибраций и климатических условий эксплуатации, вред для окружающей среды. Однако имеется одна любопытная фраза на предмет сравнения двух технологий литий-ионных батарей.

В вольном моем переводе выглядит так:

NMC технология показывает меньшее воздействие на окружающую среду в расчёте на километр пробега транспорта, чем LFP технология с металлическим анодом батарейной ячейки, но здесь сложно уменьшить или ликвидировать ошибки. Основной смысл выглядит как: более высокая плотность энергии NMC даёт меньший вес и таким образом меньшее электропотребление.

1) Призматическая ячейка LMO технологии, производитель CPEC, USA, стоимость 400$.

2) Призматическая ячейка LFP технологии, производитель AA Portable Power Corp, стоимость 160$.

3) Для сравнения добавим авиационную батарею резервного питания, построенную на технологии LFP и ту самую которая участвовала в нашумевшем скандале возгорания Боинга в 2013 году, производитель True Blue Power.

Cведём исходные данные в таблицу.

Как видим, действительно, наибольшей энергетической эффективностью обладают LMO ячейки, классический свинец проигрывает по удельной энергии минимум в два раза.

Всем ясно, что система BMS для массива Li-Ion батарей добавит массы этому решению, то есть, снизит удельную энергию примерно на 20 процентов (разница между чистым весом батарей и комплектным решением с учетом систем BMS, оболочки модуля, контроллера батарейного шкафа). Массу перемычек, батарейного выключателя и батарейного шкафа принимаем условно равной для литий-ионных батарей и батарейного массива свинцово-кислотных батарей.

Теперь попробуем сравнить расчётные параметры. При этом примем глубину разряда для свинца – 70%, а для Li-Ion – 90%.

Отметим, что низкая удельная энергия для авиационной батареи связана с тем, что сама батарея (которую можно рассматривать как модуль) заключена в металлический противопожарный кожух, обладает разъёмами и системой обогрева для эксплуатации в условиях низких температур. Для сравнения приведён расчёт для одной ячейки в составе батареи TB44, откуда можно сделать вывод о близких характеристиках с обычной LFP ячейкой. Кроме того, авиационная батарея рассчитана на большие токи заряда/разряда, что связано с необходимостью быстрой подготовки воздушного судна к новому полёту на земле и большим током разрядки в случае аварийной ситуации на борту, например, пропадании бортового питания
Кстати вот как сравнивает разные типы авиационных батарей сам производитель

Как видим из таблиц:

1) Мощность батарейного шкафа в случае LMO технологии выше.
2) Количество циклов работы батарей для LFP больше.
3) Удельный вес для LFP меньше, соответственно, при той же ёмкости батарейный шкаф на железо-литий-фосфатной технологии больше.
4) Склонность к тепловому разгону у технологии LFP меньше, что связано с его химической структурой. Как следствие, он считается относительно безопасным.

Например, такая схема. В данном случае чистый вес батарей будет 340 кг, ёмкость составит 100 ампер-часов.

Или схема для LFP 160S2P, где чистая масса батарей будет 512 кг, а ёмкость — 200 ампер-часов.

ВЫВОД: Несмотря на то, что батареи с химией железо-литий-фосфат (LiFeO4, LFP) используются большей частью в электротранспорте, их характеристики обладают рядом преимуществ перед химической формулой LMO, позволяют заряжать большим током, менее подвержены риску теплового разгона. Какой тип батарей выбрать, остаётся на усмотрении поставщика готового комплексного решения, который определяет это по ряду критериев, и не в последнюю очередь это стоимость батарейного массива в составе ИБП. В данный момент любой тип литий-ионных батарей всё ещё проигрывает по стоимости классическим решениям, но большая удельная мощность литиевых батарей на единицу массы и меньшие габарита всё чаще будет определять выбор в сторону новых накопителей энергии. В ряде случаев меньшая полная масса ИБП определяет выбор в сторону новых технологий. Этот процесс будет проходить совершенно незаметно, и в данный момент сдерживается высокой стоимостью в низком ценовом сегменте (бытовые решения) и инертностью мышления в отношении пожарной безопасности лития у заказчиков, которые ищут лучшие варианты ИБП в промышленном сегменте ИБП мощностью более 100 кВА. Уровень среднего сегмента мощностей ИБП от 3кВА до 100 кВА возможен к реализации на литий-ионных технологиях, но ввиду мелкосерийного производства достаточно дорог и проигрывает готовым серийным образцам ИБП на VRLA батареях.

Узнать подробности и обсудить конкретное решение с использованием литий-ионных батарей для вашей серверной или ЦОД можно, направив запрос на электронную почту info@ot.ru, либо сделав запрос на сайте компании www.ot.ru.

ОТКРЫТЫЕ ТЕХНОЛОГИИ – надёжные комплексные решения от мировых лидеров, адаптированные именно под ваши цели и задачи.

Автор: Куликов Олег
Ведущий инженер конструктор
Департамент интеграционных решений
Компания Открытые Технологии

Ссылка на основную публикацию
Форум лексус рх 350 2007
Как выбрать Lexus RX?Надёжная ли машина?Какой расход топлива?Какие бывают комплектации?Насколько нужны те или иные функции?На что смотреть при покупке? Информация...
Уроки нлп для начинающих
Если вы хотя бы немного интересуетесь психологией, то о нейролингвистическом программировании (НЛП), наверное, тоже слышали. В статье мы постараемся объяснить...
Уроки ворд 2010 для начинающих
Microsoft Office 2010 — бесплатные обучающие уроки для чайников с нуля. Получите необходимые навыки профессиональной работы с пакетом Microsoft Office...
Форум грибников витебской области
В Беларуси много грибов: белые грибы, подосиновики, лисички и др. #новостиlespr или #newslespr - добавляйте фото в инстаграм с таким...
Adblock detector