Что такое токовая петля

Что такое токовая петля

Что делать, если Вам требуется считывать показания датчика температуры, работающего в условиях промышленного производства и расположенного на расстоянии 30 метров от управляющего контроллера? После долгих раздумий и тщательного изучения существующих решений, Вы наверняка выберете не Wi-Fi, Bluetooth, ZigBee, Ethernet или RS-232/423, а токовую петлю 20 мА, которая с успехом используется уже более 50 лет. Несмотря на кажущуюся архаичность этого интерфейса, такой выбор, на самом деле, является оправданным во многих случаях.

В данной статье, построенной в виде вопросов и ответов, раскрываются особенности использования токовой петли для сбора данных и управления. В статье также рассказывается о различных улучшениях и модификациях токовой петли, которые были сделаны за всю историю ее практического использования.

Что такое токовая петля 20 мА?

Токовая петля 0-20 мА или токовая петля 4-20 мА представляет собой стандарт проводного интерфейса, в котором сигнал кодируется в виде аналогового тока. Ток 4 мА соответствует минимальному значению сигнала, а ток 20 мА соответствует максимальному значению сигнала (рис. 1). В типовом приложении напряжение датчика (часто милливольтного диапазона) преобразуется в токовый сигнал из диапазона 4-20 мА. Токовая петля использовалась во всех аналоговых системах еще до появления цифрового управления и заменяла пневматические системы управления в промышленных установках.

Рис. 1. При работе с датчиком токовая петля включает пять основных элементов: датчик, передатчик, источник питания, проводящий контур (петлю) и приемник

Может ли токовая петля использоваться совместно с цифровыми сигналами?

Да, может. Обычно для представления логического «0» используется токовый сигнал 4 мА, а для кодирования логической «1» используется токовый сигнал 20 мА. Подробнее об этом рассказывается далее.

Где используется интерфейс токовой петли 4-20 мА?

Он используется в основном в промышленных приложениях, в которых датчик и контроллер или контроллер и актуатор расположены на значительном удалении друг от друга, а коммуникационные кабели пролегают в помещениях с большим уровнем электромагнитных помех.

Почему используют токовую петлю, а не традиционные интерфейсы, например, RS-232, RS-423, RS-485 и т.д.?

Существует две веские причины.

Во-первых, низкоомный контур в токовой петле обеспечивает высокую стойкость к внешним шумам. В соответствии с законом Кирхгофа сумма токов замкнутого контура равна нулю. По этой причине в токовой петле невозможно ослабление или усиление тока (рис. 2). На практике питание токовой петли осуществляется от источника напряжения 12 до 30 В, но электроника передатчика преобразует напряжение в ток. С другой стороны, интерфейсы, использующие сигналы напряжения, строятся на основе высокоомных контуров, которые оказываются весьма восприимчивыми к помехам.

Во-вторых, токовая петля имеет естественную функцию самодиагностики: если контур разрывается – ток падает до нуля, что автоматически определяется схемой. После этого формируется аварийное предупреждение и производится локализация разрыва.

Рис. 2. Принцип, лежащий в основе токовой петли, определяется первым законом Кирхгофа: сумма токов замкнутого контура равна нулю

Как токовая петля реализуется на стороне датчика и на стороне актуатора?

Устройства, подключаемые к токовой петле, можно разделить на две основные группы: датчики и актуаторы. В датчиках реализуется схема передатчика, который формирует линейный токовый сигнал в диапазоне 4…20 мА. В актуаторах используется схема приемника, который преобразует ток в управляющее напряжение. Например, для задания минимальной скорости вращения двигателя контроллер формирует токовый сигнал 4 мА, а для задания максимальной скорости – сигнал 20 мА.

Почему вместо токовой петли не использовать беспроводной интерфейс, например, Wi-Fi или другой проводной интерфейс, например, Ethernet?

Выше уже было сказано, что токовая петля обладает двумя важными преимуществами: высокой помехозащищенностью и встроенной возможностью самодиагностики. Кроме того, данный интерфейс имеет и другие достоинства, в том числе: невысокую стоимость реализации, легкость настройки и отладки, простоту диагностики, высокую надежность, возможность создания длинных линий связи вплоть до нескольких сотен метров (в том случае, если источник питания позволяет покрыть падение напряжения на проводах).

Другие проводные стандарты сложнее настраивать и обслуживать, они чувствительны к шуму, слабо защищены от взлома и отличаются высокой стоимостью реализации.

Создать беспроводную связь в промышленной среде вполне возможно, если речь идет о небольших расстояниях. Но при работе на больших дистанциях возникают трудности, связнные с необходимостью многоуровневой фильтрации, реализацией механизмов обнаружения и исправления ошибок, что приводит также и к избыточности данных. Все это увеличивает стоимость и риск разрыва связи. Такое решение вряд ли оправдано, если требуется всего лишь подключить простой датчик температуры или контроллер клапана/двигателя.

Как сигнал токового контура преобразуется в напряжение?

Все довольно просто: ток проходит через резистор, а получаемое падение напряжения усиливается с помощью операционного или дифференциального усилителя. По разным причинам для резистора токовой петли было выбрано стандартное значение сопротивления 250 Ом. Таким образом, сигналу 4 мА соответствует напряжение 1 В, а сигналу 20 мА соответствует напряжение 5 В. Напряжение 1 В оказывается достаточно большим по сравнению с фоновыми шумом и может быть легко измерено. Напряжение 5 В также является весьма удобным и лежит в диапазоне допустимых значений для большинства аналоговых схем. В то же время, максимальная мощность, рассеиваемая на резисторе токовой петли (I 2 R), составляет всего 0,1 Вт, что приемлемо даже для устройств с ограниченными возможностями по отводу тепла.

Действительно ли токовая петля 20 мА является пережитком прошлого и используется только в устаревших электронных приборах?

Совсем нет. Производители интегральных микросхем и приборов все еще выпускают новые продукты, поддерживающие этот интерфейс.

Каким образом аналоговая токовая петля адаптируется к цифровому миру?

Как было сказано выше, токовая петля позволяет передавать цифровые данные. Результаты измерений от датчика можно посылать не в виде аналогового непрерывного сигнала, а в виде дискретных токовых сигналов. Типовая разрядность данных при этом составляет от 12 до 16 бит. Иногда используют разрядность 18 бит, но это скорее является исключением, так как для обычных промышленных систем вполне хватает и 16 бит. Таким образом, токовая петля может быть интегрирована в цифровые системы управления.

Что еще требуется для передачи цифровых данных?

Для выполнения обмена цифровыми данными будет недостаточно простой пересылки битов в виде токовых импульсов. Необходимо каким-то образом сообщать пользователю, когда начинается и заканчивается пакет данных. Кроме того, требуется контролировать появление ошибок и выполнять некоторые другие функции. Таким образом, для передачи цифровых данных с помощью токовой петли требуется определить формат кадров и реализовать соответствующий протокол передачи.

Что такое стандарт HART?

HART – общепринятый стандарт, который оговаривает не только физическое кодирование битов, но определяет формат и протокол передачи данных. Например, в формате кадра используются различные поля: многобайтовая преамбула, стартовый байт, многобайтовый адрес, поле команды, поле данных, поле, указывающее количество байтов данных, фактические данные и, наконец, контрольная сумма.

Разработка HART была инициирована Rosemount Corp в 1980-х годах, и вскоре он стал отраслевым стандартом де-факто. Обозначение HART (Highway Addressable Remote Transducer) было закреплено в 1990-х годах, когда стандарт стал открытым и даже был реализован в виде стандарта МЭК для использования в Европе. HART претерпел три основных модификации, но сохранил обратную совместимость со всеми предыдущими версиями, что является крайне важным для рынка промышленной электроники.

Дополнительной особенностью HART является включение информации о производителе электронного устройства в поле команды. Эта информация позволяет избежать путаницы при выполнении установки, отладки и документирования, так как существует более 100 поставщиков HART-совместимых устройств.

Какие еще улучшения дает HART?

Использование байтового поля адреса позволяет одной токовой петле работать с множеством подключенных датчиков, поскольку каждому датчику может быть присвоен уникальный номер. Это приводит к значительной экономии средств, затрачиваемых на прокладку проводов и монтаж по сравнению с соединением точка-точка.

Подключение множества устройств к одной общей токовой петле означает, что эффективная скорость передачи данных для каждого отдельного устройства уменьшается. Однако чаще всего это не является проблемой. Дело в том, что в большинстве промышленных приложений обновление данных и передача команд происходит довольно редко – порядка одного раза в секунду. Например, температура — наиболее часто измеряемая физическая величина- как правило, меняется достаточно медленно.

Таким образом, стандарт HART делает токовую петлю 20 мА востребованной даже в век цифровых технологий.

Есть ли какие-либо другие улучшения, которые повышают актуальность данного интерфейса?

Да, другое важное усовершенствование касается питания. Напомним, что токовая петля использует диапазон сигналов 4-20 мА. Источник тока может находиться в передатчике или приемнике. В то же время и датчику, и актуатору требуется дополнительный источник для питания собственной электроники (АЦП, усилители, драйверы и т.д.). Это приводит к усложнению монтажа и увеличению стоимости.

Однако по мере развития интегральных технологий потребление приемников и передатчиков уменьшалось. В результате появилась реальная возможность питания устройств непосредственно от токовой петли. Если потребление электронных компонентов, входящих в состав датчика или актуатора, не превышает 4 мА, то нет необходимости в дополнительном источнике питания. Пока напряжение сигнального контура достаточно велико, интерфейс токовой петли может питать сам себя.

Есть ли какие-либо другие преимущества у устройств с питанием от токовой петли?

Да. Многие устройства с питанием от сигнальных линий должны иметь разрешение на использование во взрывоопасных зонах. Например, они должны быть сертифицированы, как невоспламеняющиеся (N.I.) или искробезопасные (I.S.). Для устройств любого из этих классов требуется, чтобы энергии, потребляемой электроникой, было так мало, чтобы ее не хватало для возгорания как при нормальных условиях эксплуатации, так и при авариях. Потребляемая мощность устройств с питанием от токовой петли столь мала, что они обычно без проблем проходят данную сертификацию.

Что делают производители ИС для упрощения работы с токовой петлей?

Они делают то же, что и всегда: создают ИС, которые обеспечивают реализацию не только базового функционала, но множества других дополнительных возможностей. Например, Maxim Integrated MAX12900 представляет собой малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА (рис. 3).

Читайте также:  Сравнение hdmi и dvi

Рис. 3. MAX12900 – малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА, который обеспечивает выполнение базовых функций, а также множества дополнительных полезных возможностей, в том числе питание напрямую от токовой петли

MAX12900 обеспечивает не только передачу данных, но и питание напрямую от токовой петли. Микросхема объединяет в одном корпусе множество функциональных блоков: стабилизатор напряжения LDO; две схемы для формирования ШИМ-сигналов; два малопотребляющих и стабильных ОУ общего назначения; один широкополосный ОУ с нулевым смещением; два диагностических компаратора, схему управления подачей питания для обеспечения плавного включения; источники опорного напряжения с минимальным дрейфом.

Можете ли вы привести пример реализации датчика с интерфейсом токовой петли?

Компания Texas Instruments предлагает TIDM-01000 – референсную схему датчика температуры с интерфейсом токовой петли 4-20 мА. Схема построена на базе микроконтроллера MSP430 и представляет собой бюджетное решение с минимальным набором компонентов.

Рис. 4. Референсная схема TIDM-01000 представляет собой датчик температуры (RTD) с токовым интерфейсом 4-20 мА. Схема построена на базе нескольких ИС, которые обеспечивают обработку показаний датчика и взаимодействие с токовой петлей

В TIDM-01000 для управления током используется модуль Smart Analog Combo (SAC), встроенный в микроконтроллер MSP430FR2355. Таким образом, отдельный ЦАП не требуется. Схема имеет 12-битное разрешение с шагом квантования выходного тока 6 мкА. Предложенное решение обеспечивает защиту от обратной полярности, а защита входов токовой петли отвечает требованиям IEC61000-4-2 и IEC61000-4-4 (рис. 5).

Рис. 5. Передатчик, построенный с использованием TIDM-01000, умещается на небольшой печатной плате. Компактность является еще одним достоинством токовой петли

Заключение

В статье были рассмотрены основные вопросы, посвященные использованию токовой петли 4-20 мА в промышленных приложениях. Несмотря на то, что этот интерфейс является настоящей «древностью» по меркам электроники, тем не менее, его по-прежнему широко используют, в том числе в современных цифровых устройствах. В статье также рассказывалось о том, каким образом питание от токового контура дополнительно расширяет возможности данного интерфейса.

Блог о электронике

Иногда приходится передавать сигнал на большое расстояние (десятки метров, а то и километры). Главная проблема при этом в том, что через линию может пронестись электромагнитная волна (помеха) и попытаться индуцировать в ней ток. Ток будет мизерным, но так как входы обычно высокоомные, в сотни килоом, то даже от таких незначительных наводок на входе может возникнуть перенапряжение. Ведь по закону Ома U = I * R. R входа у нас может быть и под ГигаОм, при этом наводка тока даже в 0.001мА может раскачать напругу до киловольта. Вход вынесет за милую душу, хотя энергия там и невелика, но много ли надо тонкопленочному затвору транзистора? Решение тут одно — снижать входное сопротивление.

Хорошим способом решение этой проблемы является смена сигнала с напряжения, на ток. Т.е. за уровни мы принимаем не наличие каких-либо напряжений, а значения тока в цепи. Навести помеху тут будет сложней, ведь два провода линии идут параллельно, а значит помеха будет наводиться в них одновременно и гасить сама себя, вычитаясь на дифференциальном входе приемника.

Ток будем вдувать в линию посредством источника тока, радующего нас тем, что ему плевать какое сопротивление у линии, он будет обеспечивать заданный ток до тех пор, пока мощи хватит.

Цифровая линия
Тут все просто, обычно по токовой петле развязывают RS232 и им подобные интерфейсы с независимыми каналами на прием/передачу.
Плюсом токовой петли является то, что она легко развязывается оптикой, ведь светодиод, являющийся основным передатчиком оптопары, питается током.

Схема может выглядеть следующим образом:

Когда подаем единичку на вход, то она зажигает светодиод, транзистор оптопары открывается и пускает ток в петлю. Это ток зажигает светодиод во второй оптопаре, ее транзистор открывается и прижимает линию к земле. Линия при этом получается инвертирующейся. Но при желании это легко решается одним транзистором.

Оптопарой тут можно выбрать что то вроде SFH610A
. Главное, чтобы предельное напряжение, которое может выдержать транзистор, было выше чем может развить источник тока, ведь он будет пытаться продавить транюзк когда тот закрыт. Для данной оптопары это Vceo = 70V. Обычно же напряжение источника редко превышает 24 вольта. А также следует поглядеть на ток колектора для оптопары, чтобы он был не меньше, чем выдает источник тока. Для данной оптопары он составляет 50мА.

Если еще взять источник питания линии внешний, то схема получается вообще неубиваемой. Т.к. приемник, передатчик и линия не связаны между собой вообще.

В качестве источника тока я обычно втыкаю тут NSI45020 . Вообще это линейный драйвер светодиодов. Фиговина размером с резистор 1206, на выходе имеет строго заданный ток — 20мА.

Можно вкатывать напряжение питания вплоть до 45 вольт, можно параллелить, чтобы ток был поболее. При цене в 5 рублей штука — очень клевая вещь. Рекомендую держать в хозяйстве.

А для консерваторов — LM317 в режиме стабилизатора тока еще никто не отменял. Правда гораздо более громоздко выходит и стоит обычно дороже. Зато достается без проблем в любом радио ларьке.

Недостаток оптической развязки — ограничение скорости. У оптопары, особенно ширпотребной, весьма посредственные частотные характеристики. Но для какого-нибудь UART хватит. Также на скорость влияет тот факт, что длинная линия обладает большой емкостью, а зарядка ее происходит источником тока, т.е. чем дальше, тем больше емкость линии и медленней передача.

А если надо вытащить данные с какого-нибудь удаленного аналогового датчика? Тут тоже на помощь придет токовая петля, правда конструкция будет несколько сложней.

Нам нужно будет сделать источник, превращающий напряжение в ток. С линейной зависимостью, скажем вкатили мы на вход 5 вольт, а наша схема вдула в линию 50мА. Делается это на операционном усилителе. Примерно вот по такой схеме:

Работает она просто. Т.к. ОУ, охваченный обратной связью, стремиться уравнять свои входы, т.е. напряжение между прямым и инверсным входом равно нулю, то можно считать, что Uin засажен напрямую на R0. И ток через R0 получается равным Uin/R0. Ведь сопротивление входов ОУ ОЧЕНЬ большое, настолько большое, что мы можем смело считать, что ток туда не втекает. А так как R0 часть петли, то ток в петле будет равен току R0, вне зависимости от сопротивления линии и сопротивления нагрузки, разумеется если источник питания может продавить эти сопротивления, а транзистор не выходит в насыщение, оставаясь в линейном режиме. В качестве источника питания тут можно взять независимый стабилизированный источник, вольт так на 12.

На другой стороне петли достаточно снять падение напряжения на резисторе нагрузки Rн.

Вот тут, ради лулзов, собрал на макетном поле Pinboard II эту конструкцию. Т.к. задающий резистор R0 у меня получился в 10кОм (такой стоит рядом с макетным полем), то соотношение напряжение/ток получилось 1:10000 т.е. на 1 вольт приходится 0.1мА в петле. Нифига не стандарт, да и вообще мало слишком, но принцип работы показывает хорошо.

И видео работы:

Есть более громоздкий, но и гораздо более точный способ:

Тут мы заводим специальный измерительный резистор Rs и на нем операционником замеряем падение, а потом результат загоняем во второй операционник. Т.к. конструкция из OP1 является для OP2 обратной связью, а он выводит разность на своих входах в ноль, то получаем, что:

Получаем зависимость Is = Uin/100 с хорошей такой линейностью, особенно если взять прецезионные усилки с Rail-2-Rali выходом.

Если нужна максимальная точность, то лучше применить готовую микросхему. Существует и масса спекциализированных формирователей токовой петли. Например MAX15500. Включаешь по даташиту и радуешься 🙂

Гальваническую развязку аналоговой токовой петли можно сделать на изолирующих усилителях. Вроде ISO124


Коэффициент усилениея у него 1. Т.е. 1 вольт вошел — 1 вышел. Никаких заморочек с обратной связью и прочим. Два независимых входа питания, с одной и с другой стороны. Один недостаток — стоит она недешево. Та же ISO124 от 15 баксов за штуку.

Также прикольное свойство токовой петли в том, что можно питать удаленное устройство через эту же петлю. Т.к. источник тока компенсирует потребление. Разумеется в разумных пределах, но для каких-нибудь датчиков удаленных вполне неплохой вариант.

Стандарты
Единого стандарта на токовую петлю, величины токов и разьемы, как например с RS232, нет. Но в промышленности более менее устоялся стандарт аналоговой токовой петли 4…20мА, т.е. минимальный уровень это 4мА, а максимальный 20мА. Нулевой ток считается обрывом линии. Для цифровой петли чаще применяют диапазон 0…20мА. Также иногда встречается вариант 0…60мА, но это экзотика.

41 thoughts on “Токовая петля”

А можно ли использовать стабилитрон для гашения бросков напряжения на цифровой линии? Воткнуть по штуке на каждый конец.

Правильно ли я понял, что токовая петля просто гораздо лучше защищена от обычных помех, в том ее выгода?

Стабилитроны и так ставят. Только не стабилитроны, а супрессоры. Они мощней и способны рассять большую энергию. Преимущество петли в том, что там меньшее влияние на аналоговый сигнал и ее легко развязывать.

И стабилитроны, и супрессоры (правильнее, все же речь вести о супрессорах) включают в цепь для ее защиты от статики (нано- и микросекунды) от вывода входных цепей из строя. К защите от помех они отношения не имеют: если на линии с логическим «0» наведется помеха выше уровня супрессора, он, лишь, откроется, шунтируя ее до своего уровня. Другими словами, логическая схема все равно воспримет помеху, если ее длительность укладывается в характеристики логики.

При цифровой дифф линии синфазная помеха вычтется. Плюс CRC никто не отменял.

Это Ваш совет борьбы с помехой и ошибками. Никто с этим не спорит. Но иной раз: на коротких расстояниях, нечетное число сигнальных линий, ограничение числа проводников, — нет возможности использовать витую пару…
Я, лишь, обозначил предназначение супрессора как родственника варистора.

Читайте также:  Можно ли узнать местоположение абонента

Дак оно же гавно! Оно же греет и ток жрёт.
Люди уже давно применяют развязывающие трансформаторы, они и быстрее, и надёжнее будут. см. ethernet.

Токовая петля применяется когда приходится передавать сигнал по проводам на большое расстояние десятки метров, а то и километры. Что бы передать на такие большие расстояния и избавиться от действия помех и придумали такой подход.
Да бы улучшить энергетические характеристики, что бы не грелось и не жрало ток, можно попробовать использовать импульсные источники тока.

Да неужели? Нука кинь эзернет на пару-тройку километров одним куском. А если аналог так еще и затрах будет с преобразованием и паковкой все в цифру.

та який килоОметр
там ста метров хватит чтоб увидеть косяк
мы кидали 300 через доп хаб
и то: когда работает, когда нет

на сколько мне известно эзернет можно кидать максимум на 300м при 10 мбит, и на 100м при 100 мбит

для стабильной работы так все равно не надо прикалываться
у нас был опыт протяжки кабеля метров 150
себе интеренет заводили
там была какая-то мега пара(экран и трос внутри)
и даже что-то там мегапупер поставили(тогда не вдавался в подробности)
а нормально работало только то, что короче 50 метров
как-то так

Эзернет на пару километров? Да хоть на пару десятков, это всё пыль для моряка! Не забывайте, что по стеклу эзернет тоже бегает 🙂
А вообще — токовая петля это частный случай дифф-линии, и широко применяется в промышленности. Всякие датчики индустриального исполнения имеют выход 4-20ма, от него же и питаются.

Любопытно. У нас на жд для связи установок со станционным оборудованием (по обыкновенной медной паре длиной до 30 км) используется интерфейс V23 — полудуплекс с частотной модуляцией, скорость 1200 бод. Хреновый протокол конечно, устарел давно, и затухание с расстоянием растет прилично, и помеху ловит будь здоров, но есть у него один важный в нашей специфике плюс — его слышно :). При помощи говна и палок, как то обыкновенная телефонная трубка, наушник или стрелочный вольтметр (редкие кодовые пачки вполне различимы на глаз, т. к. амплитуда у них около 4-х вольт) можно оперативно найти место порыва, до куда сигнал еще «добивает» и там уже принимать меры по восстановлению связи.
А вот от приемопередатчика на станции до спец. платы в компе, обрабатывающем поступающие данные, связь почему-то осуществляется токовой петлей, хотя там провод длиной метра полтора максимум. Зачем так сделано — непонятно.

ПОНАБ?
Главное что работает блин, и через пупины проходит.
xDSL на высокоомное ухо кстати тоже услышать можно, правда посылок уже не различишь.

>>ПОНАБ?
КТСМ 🙂 В принципе к ПОНАБам в широком смысле, как к классу устройств диагностики относится.

Старожилы рассказывали, что древняя аппаратура ПОНАБ-3 (конкретная разновидность), вообще обладала «волшебными» свойствами. За счет амплитудной модуляции сигналов в физическом канале связи, способна была работать даже при полном (!) обрыве кабеля — сигнал прошивал через почву. Дескать, был реальный случай, когда связь сохранялась при полутораметровом разрыве между кусками кабеля, пришлось только выкрутить усиление на максимум. Не знаю уж правда или нет, я тогда еще не работал по данной профессии.

Просто привычка так называть, как плис (а их разных много fpga, cpld и тд.)
На Украине тоже свой понаб давно запили, АСДК-Б называется, хотя и ктсм есть (друг на их обслуживании работал).

О стандартах токовой петли.
4-20мА широко применяется в современном КИПе, а именно при передаче нормированного аналогового сигнала с удаленных измерительных преобразователей (температуры, давления и пр.) на систему управления/контроля процессом и с системы на исполнительные механизмы (задвижки/заслонки и пр.), часто комбинирована и с параметрирующей цифрой (HART).
0-20мА «цифра» применялась, к примеру, в устаревшем PLC SIMATIC S5 для связи с программатором, операторской панелью и т.п. периферией. Теперь вытеснена RS485, Ethernet и прочими.
Конечно же для каждой конкретной задачи выбирать надо оптимальное решение. Но осветить еще применяющийся (физический) канал связи широкой публике, считаю не лишним. Об этом наверняка можно найти много инфы на просторах и-нета, но она скорее всего будет изложена довольно сухо.

Можно считать стандартом. Могу лишь подтвердить что в промышленности используется очень широко. Есть варианты:
0-60 (редкость)
0-40
0-20
4-20 (наиболее распространен т.к. позволяет реализовать аналоговый 1-Wire и выявлять обрыв)
Почти все современные аналоговые датчики используют именно 4-20.
Помимо того поверх токовой петли работают такие протоколы как HART.

….Также иногда встречается вариант 0…60мА, но это экзотика. …
В общем то никакой экзотики! Работая на в начале 90-х на телеграфе, чинил оборудование в котором как раз использовалась токовая петля 0…60мА . Конечно его поубивали в начале века но не факт, что оно где то ещё работает. Надёжное было оборудование, убить можно было, только выбросив из окна. Да и то не факт 🙂

Извиняюсь что не совсем по теме. По молодости обслуживал пульты охранной сигнализации — работали по такому же принципу только в качестве гальванической развязки стояли реле. При определенном токе реле притянуты, ток больше или меньше — реле отпадает. Ну а поскольку в середине 90-х качество телефонных линий оставляло желать лучшего… А кстати как данный вариант поведет себе при пробое изоляции и утечке на «землю»?

Если утечка после резистора нагрузки и утечка меньше чем может обеспечить выход ОУ, то пофигу вообще — ток в петле останется прежним. Если же до, то петля даст сбой, т.к. до нагруки дойдет меньше. Но тут, для большей надежности можно сделать петлю таким образом, чтобы замерялся ток на входе и на выходе.

Блог о электронике

Иногда приходится передавать сигнал на большое расстояние (десятки метров, а то и километры). Главная проблема при этом в том, что через линию может пронестись электромагнитная волна (помеха) и попытаться индуцировать в ней ток. Ток будет мизерным, но так как входы обычно высокоомные, в сотни килоом, то даже от таких незначительных наводок на входе может возникнуть перенапряжение. Ведь по закону Ома U = I * R. R входа у нас может быть и под ГигаОм, при этом наводка тока даже в 0.001мА может раскачать напругу до киловольта. Вход вынесет за милую душу, хотя энергия там и невелика, но много ли надо тонкопленочному затвору транзистора? Решение тут одно — снижать входное сопротивление.

Хорошим способом решение этой проблемы является смена сигнала с напряжения, на ток. Т.е. за уровни мы принимаем не наличие каких-либо напряжений, а значения тока в цепи. Навести помеху тут будет сложней, ведь два провода линии идут параллельно, а значит помеха будет наводиться в них одновременно и гасить сама себя, вычитаясь на дифференциальном входе приемника.

Ток будем вдувать в линию посредством источника тока, радующего нас тем, что ему плевать какое сопротивление у линии, он будет обеспечивать заданный ток до тех пор, пока мощи хватит.

Цифровая линия
Тут все просто, обычно по токовой петле развязывают RS232 и им подобные интерфейсы с независимыми каналами на прием/передачу.
Плюсом токовой петли является то, что она легко развязывается оптикой, ведь светодиод, являющийся основным передатчиком оптопары, питается током.

Схема может выглядеть следующим образом:

Когда подаем единичку на вход, то она зажигает светодиод, транзистор оптопары открывается и пускает ток в петлю. Это ток зажигает светодиод во второй оптопаре, ее транзистор открывается и прижимает линию к земле. Линия при этом получается инвертирующейся. Но при желании это легко решается одним транзистором.

Оптопарой тут можно выбрать что то вроде SFH610A
. Главное, чтобы предельное напряжение, которое может выдержать транзистор, было выше чем может развить источник тока, ведь он будет пытаться продавить транюзк когда тот закрыт. Для данной оптопары это Vceo = 70V. Обычно же напряжение источника редко превышает 24 вольта. А также следует поглядеть на ток колектора для оптопары, чтобы он был не меньше, чем выдает источник тока. Для данной оптопары он составляет 50мА.

Если еще взять источник питания линии внешний, то схема получается вообще неубиваемой. Т.к. приемник, передатчик и линия не связаны между собой вообще.

В качестве источника тока я обычно втыкаю тут NSI45020 . Вообще это линейный драйвер светодиодов. Фиговина размером с резистор 1206, на выходе имеет строго заданный ток — 20мА.

Можно вкатывать напряжение питания вплоть до 45 вольт, можно параллелить, чтобы ток был поболее. При цене в 5 рублей штука — очень клевая вещь. Рекомендую держать в хозяйстве.

А для консерваторов — LM317 в режиме стабилизатора тока еще никто не отменял. Правда гораздо более громоздко выходит и стоит обычно дороже. Зато достается без проблем в любом радио ларьке.

Недостаток оптической развязки — ограничение скорости. У оптопары, особенно ширпотребной, весьма посредственные частотные характеристики. Но для какого-нибудь UART хватит. Также на скорость влияет тот факт, что длинная линия обладает большой емкостью, а зарядка ее происходит источником тока, т.е. чем дальше, тем больше емкость линии и медленней передача.

А если надо вытащить данные с какого-нибудь удаленного аналогового датчика? Тут тоже на помощь придет токовая петля, правда конструкция будет несколько сложней.

Нам нужно будет сделать источник, превращающий напряжение в ток. С линейной зависимостью, скажем вкатили мы на вход 5 вольт, а наша схема вдула в линию 50мА. Делается это на операционном усилителе. Примерно вот по такой схеме:

Работает она просто. Т.к. ОУ, охваченный обратной связью, стремиться уравнять свои входы, т.е. напряжение между прямым и инверсным входом равно нулю, то можно считать, что Uin засажен напрямую на R0. И ток через R0 получается равным Uin/R0. Ведь сопротивление входов ОУ ОЧЕНЬ большое, настолько большое, что мы можем смело считать, что ток туда не втекает. А так как R0 часть петли, то ток в петле будет равен току R0, вне зависимости от сопротивления линии и сопротивления нагрузки, разумеется если источник питания может продавить эти сопротивления, а транзистор не выходит в насыщение, оставаясь в линейном режиме. В качестве источника питания тут можно взять независимый стабилизированный источник, вольт так на 12.

Читайте также:  Id cooling icekimo 120w

На другой стороне петли достаточно снять падение напряжения на резисторе нагрузки Rн.

Вот тут, ради лулзов, собрал на макетном поле Pinboard II эту конструкцию. Т.к. задающий резистор R0 у меня получился в 10кОм (такой стоит рядом с макетным полем), то соотношение напряжение/ток получилось 1:10000 т.е. на 1 вольт приходится 0.1мА в петле. Нифига не стандарт, да и вообще мало слишком, но принцип работы показывает хорошо.

И видео работы:

Есть более громоздкий, но и гораздо более точный способ:

Тут мы заводим специальный измерительный резистор Rs и на нем операционником замеряем падение, а потом результат загоняем во второй операционник. Т.к. конструкция из OP1 является для OP2 обратной связью, а он выводит разность на своих входах в ноль, то получаем, что:

Получаем зависимость Is = Uin/100 с хорошей такой линейностью, особенно если взять прецезионные усилки с Rail-2-Rali выходом.

Если нужна максимальная точность, то лучше применить готовую микросхему. Существует и масса спекциализированных формирователей токовой петли. Например MAX15500. Включаешь по даташиту и радуешься 🙂

Гальваническую развязку аналоговой токовой петли можно сделать на изолирующих усилителях. Вроде ISO124


Коэффициент усилениея у него 1. Т.е. 1 вольт вошел — 1 вышел. Никаких заморочек с обратной связью и прочим. Два независимых входа питания, с одной и с другой стороны. Один недостаток — стоит она недешево. Та же ISO124 от 15 баксов за штуку.

Также прикольное свойство токовой петли в том, что можно питать удаленное устройство через эту же петлю. Т.к. источник тока компенсирует потребление. Разумеется в разумных пределах, но для каких-нибудь датчиков удаленных вполне неплохой вариант.

Стандарты
Единого стандарта на токовую петлю, величины токов и разьемы, как например с RS232, нет. Но в промышленности более менее устоялся стандарт аналоговой токовой петли 4…20мА, т.е. минимальный уровень это 4мА, а максимальный 20мА. Нулевой ток считается обрывом линии. Для цифровой петли чаще применяют диапазон 0…20мА. Также иногда встречается вариант 0…60мА, но это экзотика.

41 thoughts on “Токовая петля”

А можно ли использовать стабилитрон для гашения бросков напряжения на цифровой линии? Воткнуть по штуке на каждый конец.

Правильно ли я понял, что токовая петля просто гораздо лучше защищена от обычных помех, в том ее выгода?

Стабилитроны и так ставят. Только не стабилитроны, а супрессоры. Они мощней и способны рассять большую энергию. Преимущество петли в том, что там меньшее влияние на аналоговый сигнал и ее легко развязывать.

И стабилитроны, и супрессоры (правильнее, все же речь вести о супрессорах) включают в цепь для ее защиты от статики (нано- и микросекунды) от вывода входных цепей из строя. К защите от помех они отношения не имеют: если на линии с логическим «0» наведется помеха выше уровня супрессора, он, лишь, откроется, шунтируя ее до своего уровня. Другими словами, логическая схема все равно воспримет помеху, если ее длительность укладывается в характеристики логики.

При цифровой дифф линии синфазная помеха вычтется. Плюс CRC никто не отменял.

Это Ваш совет борьбы с помехой и ошибками. Никто с этим не спорит. Но иной раз: на коротких расстояниях, нечетное число сигнальных линий, ограничение числа проводников, — нет возможности использовать витую пару…
Я, лишь, обозначил предназначение супрессора как родственника варистора.

Дак оно же гавно! Оно же греет и ток жрёт.
Люди уже давно применяют развязывающие трансформаторы, они и быстрее, и надёжнее будут. см. ethernet.

Токовая петля применяется когда приходится передавать сигнал по проводам на большое расстояние десятки метров, а то и километры. Что бы передать на такие большие расстояния и избавиться от действия помех и придумали такой подход.
Да бы улучшить энергетические характеристики, что бы не грелось и не жрало ток, можно попробовать использовать импульсные источники тока.

Да неужели? Нука кинь эзернет на пару-тройку километров одним куском. А если аналог так еще и затрах будет с преобразованием и паковкой все в цифру.

та який килоОметр
там ста метров хватит чтоб увидеть косяк
мы кидали 300 через доп хаб
и то: когда работает, когда нет

на сколько мне известно эзернет можно кидать максимум на 300м при 10 мбит, и на 100м при 100 мбит

для стабильной работы так все равно не надо прикалываться
у нас был опыт протяжки кабеля метров 150
себе интеренет заводили
там была какая-то мега пара(экран и трос внутри)
и даже что-то там мегапупер поставили(тогда не вдавался в подробности)
а нормально работало только то, что короче 50 метров
как-то так

Эзернет на пару километров? Да хоть на пару десятков, это всё пыль для моряка! Не забывайте, что по стеклу эзернет тоже бегает 🙂
А вообще — токовая петля это частный случай дифф-линии, и широко применяется в промышленности. Всякие датчики индустриального исполнения имеют выход 4-20ма, от него же и питаются.

Любопытно. У нас на жд для связи установок со станционным оборудованием (по обыкновенной медной паре длиной до 30 км) используется интерфейс V23 — полудуплекс с частотной модуляцией, скорость 1200 бод. Хреновый протокол конечно, устарел давно, и затухание с расстоянием растет прилично, и помеху ловит будь здоров, но есть у него один важный в нашей специфике плюс — его слышно :). При помощи говна и палок, как то обыкновенная телефонная трубка, наушник или стрелочный вольтметр (редкие кодовые пачки вполне различимы на глаз, т. к. амплитуда у них около 4-х вольт) можно оперативно найти место порыва, до куда сигнал еще «добивает» и там уже принимать меры по восстановлению связи.
А вот от приемопередатчика на станции до спец. платы в компе, обрабатывающем поступающие данные, связь почему-то осуществляется токовой петлей, хотя там провод длиной метра полтора максимум. Зачем так сделано — непонятно.

ПОНАБ?
Главное что работает блин, и через пупины проходит.
xDSL на высокоомное ухо кстати тоже услышать можно, правда посылок уже не различишь.

>>ПОНАБ?
КТСМ 🙂 В принципе к ПОНАБам в широком смысле, как к классу устройств диагностики относится.

Старожилы рассказывали, что древняя аппаратура ПОНАБ-3 (конкретная разновидность), вообще обладала «волшебными» свойствами. За счет амплитудной модуляции сигналов в физическом канале связи, способна была работать даже при полном (!) обрыве кабеля — сигнал прошивал через почву. Дескать, был реальный случай, когда связь сохранялась при полутораметровом разрыве между кусками кабеля, пришлось только выкрутить усиление на максимум. Не знаю уж правда или нет, я тогда еще не работал по данной профессии.

Просто привычка так называть, как плис (а их разных много fpga, cpld и тд.)
На Украине тоже свой понаб давно запили, АСДК-Б называется, хотя и ктсм есть (друг на их обслуживании работал).

О стандартах токовой петли.
4-20мА широко применяется в современном КИПе, а именно при передаче нормированного аналогового сигнала с удаленных измерительных преобразователей (температуры, давления и пр.) на систему управления/контроля процессом и с системы на исполнительные механизмы (задвижки/заслонки и пр.), часто комбинирована и с параметрирующей цифрой (HART).
0-20мА «цифра» применялась, к примеру, в устаревшем PLC SIMATIC S5 для связи с программатором, операторской панелью и т.п. периферией. Теперь вытеснена RS485, Ethernet и прочими.
Конечно же для каждой конкретной задачи выбирать надо оптимальное решение. Но осветить еще применяющийся (физический) канал связи широкой публике, считаю не лишним. Об этом наверняка можно найти много инфы на просторах и-нета, но она скорее всего будет изложена довольно сухо.

Можно считать стандартом. Могу лишь подтвердить что в промышленности используется очень широко. Есть варианты:
0-60 (редкость)
0-40
0-20
4-20 (наиболее распространен т.к. позволяет реализовать аналоговый 1-Wire и выявлять обрыв)
Почти все современные аналоговые датчики используют именно 4-20.
Помимо того поверх токовой петли работают такие протоколы как HART.

….Также иногда встречается вариант 0…60мА, но это экзотика. …
В общем то никакой экзотики! Работая на в начале 90-х на телеграфе, чинил оборудование в котором как раз использовалась токовая петля 0…60мА . Конечно его поубивали в начале века но не факт, что оно где то ещё работает. Надёжное было оборудование, убить можно было, только выбросив из окна. Да и то не факт 🙂

Извиняюсь что не совсем по теме. По молодости обслуживал пульты охранной сигнализации — работали по такому же принципу только в качестве гальванической развязки стояли реле. При определенном токе реле притянуты, ток больше или меньше — реле отпадает. Ну а поскольку в середине 90-х качество телефонных линий оставляло желать лучшего… А кстати как данный вариант поведет себе при пробое изоляции и утечке на «землю»?

Если утечка после резистора нагрузки и утечка меньше чем может обеспечить выход ОУ, то пофигу вообще — ток в петле останется прежним. Если же до, то петля даст сбой, т.к. до нагруки дойдет меньше. Но тут, для большей надежности можно сделать петлю таким образом, чтобы замерялся ток на входе и на выходе.

Ссылка на основную публикацию
Что написать о себе в инстаграмме девушке
Вроде как и всё ясно, но в самом деле, как только доходит до дела, написать о себе в Инстаграм, у...
Чем открыть cab файл на компьютере
Файл формата CAB открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
Чем открыть fb2 на телефоне
Формат электронных публикаций FB2, наряду с EPUB и MOBI, является одним из самых популярных для книг, публикуемых в интернете. Мы...
Что нового в айос 12 1
Apple выпустила iOS 12.1.1 − скорее всего, последнюю публичную сборку iOS 12 в этом году. Хотя это обновление по большей...
Adblock detector