Что такое сходственные стороны треугольника

Что такое сходственные стороны треугольника

Подобные треугольники
Признаки подобия треугольников
Признаки подобия прямоугольных треугольников

Подобные треугольники

Рассмотрим два треугольника KLM и TRP (рис.1) и введём следующие обозначения.

длины сторон треугольника KLM , расположенные в порядке возрастания.

длины сторон треугольника TRP , расположенные в порядке возрастания.

Переобозначим вершины треугольников KLM и TRP так, как показано на рисунке 2.

На рисунке 2 треугольник KLM обозначается как треугольник A1B1C1 , а треугольник TRP обозначается как треугольник A2B2C2 .

  • вершины A1 и A2 , B1 и B2 , C1 и C2 называют сходственными вершинами ,
  • стороны A1B1 и A2B2 , A1C1 и A2C2 , B1C1 и B2C2 называют сходственными сторонами ,
  • углы A1 и A2 , B1 и B2 , C1 и C2 называют сходственными углами

Определение 2 . Треугольники A1B1C1 и A2B2C2 называют подобными треугольниками, если их сходственные углы равны, а сходственные стороны пропорциональны.

а, во-вторых, существует положительное число k , такое, что справедливы равенства:

a1 = k a2 , b1 = k b2 , c1 = k c2 . (1)

Признаки подобия треугольников

Признак подобия треугольников по двум сторонам и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.

Признак подобия треугольников по двум углам

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Признак подобия треугольников по трём сторонам

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны

Название признака Рисунок Формулировка признака

Формулировка признака подобия:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.

Признак подобия треугольников по двум сторонам и углу между ними
Признак подобия треугольников по двум углам

Формулировка признака подобия:

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Признак подобия треугольников по трём сторонам

Формулировка признака подобия:

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны

Признаки подобия прямоугольных треугольников

Признак подобия прямоугольных треугольников по двум катетам

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по острому углу

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по гипотенузе и катету

Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Название признака Рисунок Формулировка признака

Формулировка признака подобия прямоугольных треугольников:

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по двум катетам
Признак подобия прямоугольных треугольников по острому углу

Формулировка признака подобия прямоугольных треугольников:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по гипотенузе и катету

Формулировка признака подобия прямоугольных треугольников:

Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Следствие 1 . Прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник (рис. 3).

Следствие 2 . Отношение площадей подобных треугольников равно квадрату коэффициента подобия (рис. 4)

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.

Первый признак

Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

Доказать: ∆ABC ∆A1B1C1.

= = => = .

= = => ∆ABC ∆A1B1C1.

Второй признак

Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны.

Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1, = .

Доказать: ∆ABC ∆A1B1C1.

∆ABC2 ∆A1B1C1 (первый признак) => = .

= => AC=AC2 => ∆ABC = ∆ABC2 (первый признак) =>
∠B=∠ABC2=∠B1 => ∆ABC ∆A1B1C1 (первый признак).

Третий признак

Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.

Дано: ∆ABC и ∆A1B1C1, = = .

Доказать: ∆ABC ∆A1B1C1.

∆ABC2 ∆A1B1C1 (первый признак) => = = .

= = => AC=AC2, BC=BC2 => ∆ABC = ∆ABC2 (третий признак);
∆ABC2 ∆A1B1C1 => ∆ABC ∆A1B1C1.

Признаки подобия прямоугольных треугольников

  1. По остромууглу — см. первый признак;
  2. По двум катетам — см. второй признак;
  3. По катету и гипотенузе — см. второй признак.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров и длин биссектрис, медиан, высот и серединных перпендикуляров равно коэффициенту подобия.

Подобие в прямоугольном трегольнике

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

  • Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу,
  • Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Связанные определения

  • Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
  • Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

Литература

  • Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.: ил.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Подобные треугольники" в других словарях:

Признаки подобия треугольников — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия

Теорема Пифагора — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

Пифагора теорема — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

ПОДОБНЫЙ — ПОДОБНЫЙ, подобная, подобное; подобен, подобна, подобно. 1. кому чему. Сходный, совершенно похожий. Происшествие, подобное этому, было в прошлом году. 2. Такой, этот (о котором говорится). «Где еще мыслимы подобные вещи?» Маяковский. Перечислить… … Толковый словарь Ушакова

Высота треугольника — У этого термина существуют и другие значения, см. Высота (значения). Высота в треугольниках различного типа Высота треугольника перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зав … Википедия

Теорема Наполеона — Теорема Наполеона утверждение евклидовой планиметрии о равносторонних треугольниках … Википедия

подо́бный — ая, ое; бен, бна, бно. 1. кому чему. Сходный с кем , чем л., похожий на кого , что л. [Белесова:] Если бы вы или кто нибудь из подобных вам людей навещали меня хоть изредка, мне было бы лучше, теплее на душе. А. Островский, Богатые невесты. Он… … Малый академический словарь

ПОДОБИЕ — ср. (доба, время, пора, срок, год, година: добрый, удобный, сдобный и пр.) сходство, согласие, одновидность, схожесть. И подобия нет подлинника. | Вещь сделанная по образцу или в подражанье; изображенье чего; образ чего либо. Иссеченное из камня… … Толковый словарь Даля

Мгновенный центр скоростей — Мгновенный центр скоростей при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Содержание 1 Положение… … Википедия

В этой статье мы рассмотрим понятие подобных треугольников и другие понятия и теоремы, связанные с этим определением.

Определение подобных треугольников

Будем рассматривать следующие два треугольника (Рис. 1).

Рисунок 1. Подобные треугольники

Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны, то есть

[angle A=angle A_1, angle B=angle B_1, angle C=angle C_1,] [frac=frac<_1>=frac]

Обозначение: $ABCsim A_1B_1C_1$

Число $k$, равное отношению сходственных сторон подобных фигур называется коэффициентом подобия этих фигур.

Соотношение площадей подобных треугольников

С этим понятием связана следующая теорема о соотношении площадей подобных треугольников. Рассмотрим её без доказательства.

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, то есть

Попробуй обратиться за помощью к преподавателям

Признаки подобия треугольников

Приведем формулировки трех признаков подобия треугольников.

Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам второго треугольника, то такие треугольники подобны.

То есть, если $angle A=angle A_1, angle B=angle B_1$, то треугольники $ABC$ и $A_1B_1C_1$ подобны (рис. 2).

Рисунок 2. Первый признак подобия треугольников

Второй признак равенства треугольников: Если две стороны одного треугольника пропорциональны соответствующим сторонам второго треугольника и углы между этими сторонами равны, то данные треугольники подобны.

То есть, если $angle A=angle A_1$ и $frac=frac$, то треугольники $ABC$ и $A_1B_1C_1$ подобны (рис. 3).

Рисунок 3. Второй признак подобия треугольников

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Третий признак подобия треугольников: Если три стороны одного треугольника пропорциональны трем соответствующим сторонам второго треугольника, то такие треугольники подобны.

То есть, если $frac=frac<_1>=frac$, то треугольники $ABC$ и $A_1B_1C_1$ подобны.

Примеры задач на понятие подобия треугольников

Подобны ли равнобедренные треугольники, если они имеют

По равному острому углу;

По равному тупому углу;

По равному прямому углу.

Решение.

Пусть даны равнобедренные треугольники $ABC$ и $A_1B_1C_1$ с $angle A=angle A_1.$

Пусть $angle A=angle A_1$ — острые углы треугольников. Тогда здесь возможны два случая:

а) $angle A=angle A_1$ — углы при вершине данных треугольников. Тогда, так как треугольник $ABC$ равнобедренный, то

Так как треугольник $A_1B_1C_1$ равнобедренный, то

То есть $angle B=angle B_1, angle C=angle C_1$. По первому признаку подобия, получаем, что треугольники $ABC$ и $A_1B_1C_1$ подобны.

б) $angle A=angle A_1$ — углы при основании данных треугольников. Так как треугольники подобны, то их углы при основании равны. Но тогда два соответствующих угла одного треугольника равны двум соответствующим углам второго треугольника. Значит, по первому признаку подобия треугольников, треугольники подобны.

Так как угол тупой, то он лежит при основании данных треугольников. Аналогично пункту 1,а) получим, что они подобны.

Так как угол прямой, то он лежит при основании данных треугольников. Аналогично пункту 1,а) получим, что они подобны.

Подобны ли треугольники $ABC$ и $A_1B_1C_1$, если $AB=17, BC=30, AC=42, < A>_1B_1=34, < B>_1C_1=60, A_1C_1=84$?

Решение.

Найдем коэффициент подобия каждой пары сторон треугольников:

Следовательно, по третьему признаку подобия треугольников получаем, что данные треугольники подобны.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Ссылка на основную публикацию
Что написать о себе в инстаграмме девушке
Вроде как и всё ясно, но в самом деле, как только доходит до дела, написать о себе в Инстаграм, у...
Чем открыть cab файл на компьютере
Файл формата CAB открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
Чем открыть fb2 на телефоне
Формат электронных публикаций FB2, наряду с EPUB и MOBI, является одним из самых популярных для книг, публикуемых в интернете. Мы...
Что нового в айос 12 1
Apple выпустила iOS 12.1.1 − скорее всего, последнюю публичную сборку iOS 12 в этом году. Хотя это обновление по большей...
Adblock detector