Что такое рендеринг изображения

Что такое рендеринг изображения

В продолжении ликбеза по компьютерной графике как для программистов, так и для художников хочу поговорить о том что такое рендеринг. Вопрос не так сложен как кажется, под катом подробное и доступное объяснение!

Я начал писать статьи, которые являются ликбезом для разработчика игр. И поторопился, написав статью про шейдеры, не рассказав что же такое рендеринг. Поэтому эта статья будет приквелом к введению в шейдеры и отправным пунктом в нашем ликбезе.

Что такое рендеринг? (для программистов)

Итак, Википедия дает такое определение: Ре́ндеринг (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.

Довольно неплохое определение, продолжим с ним. Рендеринг — это визуализация. В компьютерной графике и 3д-художники и программисты под рендерингом понимают создание плоской картинки — цифрового растрового изображения из 3д сцены.
То есть, неформальный ответ на наш вопрос «Что такое рендеринг?» — это получение 2д картинки (на экране или в файле не важно). А компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).

Рендер

В свою очередь словом «рендер» называют чаще всего результат рендеринга. Но иногда и процесс называют так же (просто в английском глагол — render перенесся в русский, он короче и удобнее). Вы, наверняка, встречали различные картинки в интернете, с подписью «Угадай рендер или фото?». Имеется ввиду это 3D-визуализация или реальная фотография (уж настолько компьютерная графика продвинулась, что порой и не разберешься).

Виды рендеринга

В зависимости от возможности сделать вычисления параллельными существуют:

  • многопоточный рендеринг — вычисления выполняются параллельно в несколько потоков, на нескольких ядрах процессора,
  • однопоточный рендеринг — в этом случае вычисления выполняются в одном потоке синхронно.

Существует много алгоритмов рендеринга, но все их можно разделить на две группы по принципу получения изображения: растеризация 3д моделей и трасировка лучей. Оба способа используются в видеоиграх. Но трасировка лучей чаще используется не для получения изображений в режиме реального времени, а для подготовки так называемых лайтмапов — световых карт, которые предрасчитываются во время разработки, а после результаты предрасчета используются во время выполнения.

В чем суть методов? Как работает растеризация и трасировка лучей? Начнем с растеризация.

Растеризация полигональной модели

Сцена состоит из моделей, расположенных на ней. В свою очередь каждая модель состоит из примитивов.
Это могут быть точки, отрезки, треугольники и некоторые другие примитивы, такие как квады например. Но если мы рендерим не точки и не отрезки, любые примитивы превращаются в треугольники.

Задача растеризатора (программа, которая выполняет растеризацию) получить из этих примитивов пиксели результирующего изображения. Растеризация в разрезе графического пайплайна, происходит после вершинного шейдера и до фрагментного (Статья про шейдеры).

*возможно следующей статьёй будет обещанный мной разбор графического пайплайна, напишите в комментариях нужен ли такой разбор, мне будет приятно и полезно узнать скольким людям интересно это всё. Я сделал отдельную страничку где есть список разобранных тем и будущих — Для разработчиков игр

В случае с отрезком нужно получить пиксели линии соединяющей две точки, в случае с треугольником пиксели которые внутри него. Для первой задачи применяется алгоритм Брезенхема, для второй может применяться алгоритм заметания прямыми или проверки барицентрических координат.

Сложная модель персонажа состоит из мельчайших треугольников и растеризатор генерирует из неё вполне достоверную картинку. Почему тогда заморачиваться с трассировкой лучей? Почему не растеризовать и все? А смысл вот в чем, растеризатор знает только своё рутинное дело, треугольники — в пиксели. Он ничего не знает об объектах рядом с треугольником.

А это значит что все физические процессы которые происходят в реальном мире он учесть не в состоянии. Эти процессы прямым образом влияют на изображение. Отражения, рефлексы, тени, подповерхностное рассеивание и так далее! Все без чего мы будем видеть просто пластмассовые модельки в вакууме…
А игроки хотят графоний! Игрокам нужен фотореализм!

И приходится графическим программистам изобретать различные техники, чтобы достичь близости к фотореализму. Для этого шейдерные программы используют текстуры, в которых предрассчитаны разные данные света, отражения, теней и подповерхностного рассеивания.

В свою очередь трассировка лучей позволяет рассчитать эти данные, но ценой большего времени рассчета, которое не может быть произведено во время выполнения. Рассмотрим, что из себя представляет этот метод.

Трасировка лучей (англ. ray tracing)

Помните о корпускулярно волновом дуализме? Напомню в чем суть: свет ведёт себя и как волны и как поток частиц — фотонов. Так вот трассировка (от англ «trace» прослеживать путь), это симуляция лучей света, грубо говоря. Но трассирование каждого луча света в сцене непрактично и занимает неприемлемо долгое время.

Мы ограничимся относительно малым количеством, и будем трассировать лучи по нужным нам направлениям.
А какие направления нам нужны? Нам надо определять какие цвета будут иметь пиксели в результирующей картинке. Тоесть количество лучей мы знаем, оно равно количеству пикселей в изображении.

Что с направлением? Все просто, мы будем трассировать лучи в соответствии с точкой наблюдения (то как наша виртуальная камера направлена). Луч встретится в какой-то точке с объектом сцены (если не встретится, значит там темный пиксель или пиксель неба из скайбокса, например).

При встрече с объектом луч не прекращает своё распространение, а разделяется на три луча-компонента, каждый из которых вносит свой вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломлённый. Количество таких компонентов определяет глубину трассировки и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, однако из-за большой ресурсоёмкости процесс визуализации занимает значительное время.

Рендеринг для художников

Но рендеринг это не только программная визуализация! Хитрые художники тоже используют его. Так что такое рендеринг с точки зрения художника? Примерно то же самое, что и для программистов, только концепт-художники выполняют его сами. Руками. Точно так же как рендерер в видео-игре или V-ray в Maya художники учитывают освещение, подповерхностное рассеивание, туман и др. факторы, влияющие на конечный цвет поверхности.

К примеру картинка выше, поэтапно прорабатывается таким образом: Грубый скетч — Лайн — Цвет — Объем — Рендер материалов.

Рендер материалов включает в себя текстурирование, проработку бликов — металлы, например, чаще всего очень гладкие поверхности, которые имеют четкие блики на гранях. Помимо всего этого художники сталкиваются с растеризацией векторной графики, это примерно то же самое, что и растеризация 3д-модели.

Растеризация векторной графики

Суть примерно такая же, есть данные 2д кривых, это те контуры, которыми заданы объекты. У нас есть конечное растровое изображение и растеризатор переводит данные кривых в пиксели. После этого у нас нет возможности масштабировать картинку без потери качества.

Читайте дальше

Статьи из рубрики «Ликбез для начинающих разработчиков игр«, скорее всего окажутся очень для Вас полезными, позвольте-с отрекомендовать:

  • Что такое шейдеры? — простое объяснение сложных и страшных шейдеров
  • Партиклы — система частиц — Полезный обзор частиц и подборка видео-уроков, по созданию спецэффектов в Unity3d
Читайте также:  Формула поиска текста в ячейке

Послесловие

В этой статье, я надеюсь, вы осили столько букв, вы получили представление о том, что такое рендеринг, какие виды рендеринга существуют. Если какие-то вопросы остались — смело задавайте их в комментариях, я обязательно отвечу. Буду благодарен за уточнения и указания на какие-то неточности и ошибки.

Ответы на популярные вопросы — что это, что значит.

Что такое Рендер (Рендеринг)

Рендер (Рендеринг) — это процесс создания финального изображения или последовательности из изображений на основе двухмерных или трехмерных данных. Данный процесс происходит с использованием компьютерных программ и зачастую сопровождается трудными техническими вычислениями, которые ложатся на вычислительные мощности компьютера или на отдельные его комплектующие части.

Процесс рендеринга так или иначе присутствует в разных сферах профессиональной деятельности, будь то киноиндустрия, индустрия видеоигр или же видеоблогинг. Зачастую, рендер является последним или предпоследним этапом в работе над проектом, после чего работа считается завершенной или же нуждается в небольшой постобработке. Также стоит отметить, что нередко рендером называют не сам процесс рендеринга, а скорее уже завершенный этап данного процесса или его итоговый результат.

Этимология слова «Рендер».

Слово Рендер (Рендеринг) — это англицизм, который зачастую переводится на русский язык словом “Визуализация”.

Что такое Рендеринг в 3D?

Чаще всего, когда мы говорим о рендере, то имеем в виду рендеринг в 3D графике. Сразу стоит отметить, что на самом деле в 3D рендере нету трех измерений как таковых, которые мы зачастую можем увидеть в кинотеатре надев специальные очки. Приставка “3D” в название скорее говорит нам о способе создание рендера, который и использует 3-х мерные объекты, созданные в компьютерных программах для 3D моделирования. Проще говоря, в итоге мы все равно получаем 2D изображение или их последовательность (видео) которые создавались (рендерелись) на основе 3-х мерной модели или сцены.

Рендеринг — это один из самых сложных в техническом плане этапов в работе с 3D графикой. Чтоб объяснить эту операцию простым языком, можно привести аналогию с работами фотографов. Для того, чтоб фотография предстала во всей красе, фотографу нужно пройти через некоторые технические этапы, например, проявление пленки или печать на принтере. Примерно такими же техническими этапами и обременены 3d художники, которые для создания итогового изображения проходят этап настройки рендера и сам процесс рендеринга.

Построение изображения.

Как уже говорилось ранее, рендеринг — это один из самых сложных технических этапов, ведь во время рендеринга идут сложные математические вычисления, выполняемые движком рендера. На этом этапе, движок переводит математические данные о сцене в финальное 2D-изображение. Во время процесса идет преобразование 3d-геометрии, текстур и световых данных сцены в объединенную информацию о цветовом значение каждого пикселя в 2D изображение. Другими словами, движок на основе имеющихся у него данных, просчитывает то, каким цветом должен быть окрашено каждый пиксель изображения для получения комплексной, красивой и законченной картинки.

Основные типы рендеринга:

В глобальном плане, есть два основных типа рендеринга, главными отличиями которых является скорость, с которой просчитывается и финализируется изображение, а также качество картинки.

Что такое Рендеринг в реальном времени?

Рендеринг в реальном времени зачастую широко используется в игровой и интерактивной графике, где изображение должно просчитываться с максимально большой скоростью и выводиться в завершенном виде на дисплей монитора моментально.

Поскольку ключевым фактором в таком типе рендеринга есть интерактивность со стороны пользователя, то изображение приходится просчитывать без задержек и практически в реальном времени, так как невозможно точно предсказать поведение игрока и то, как он будет взаимодействовать с игровой или с интерактивной сценой. Для того, чтоб интерактивная сцена или игра работала плавно без рывков и медлительности, 3D движку приходится рендерить изображение со скоростью не менее 20-25 кадров в секунду. Если скорость рендера будет ниже 20 кадров, то пользователь будет чувствовать дискомфорт от сцены наблюдая рывки и замедленные движения.

Большую роль в создание плавного рендера в играх и интерактивных сценах играет процесс оптимизации. Для того, чтоб добиться желаемой скорости рендера, разработчики применяют разные уловки для снижения нагрузки на рендер движок, пытаясь снизить вынужденное количество просчетов. Сюда входит снижение качества 3д моделей и текстур, а также запись некоторой световой и рельефной информации в заранее запеченные текстурные карты. Также стоит отметить, что основная часть нагрузки при просчете рендера в реальном времени ложиться на специализированное графическое оборудование (видеокарту -GPU), что позволяет снизить нагрузку с центрального процессора (ЦП) и освободить его вычислительные мощности для других задач.

Что такое Предварительный рендер?

К предварительному рендеру прибегают тогда, когда скорость не стоит в приоритете, и нужды в интерактивности нет. Данный тип рендера используется чаще всего в киноиндустрии, в работе с анимацией и сложными визуальными эффектами, а также там, где нужен фотореализм и очень высокое качество картинки.

В отличие от Рендера в реальном времени, где основная нагрузка приходилась на графические карты(GPU) В предварительном рендере нагрузка ложится на центральный процессор(ЦП) а скорость рендера зависит от количества ядер, многопоточности и производительности процессора.

Нередко бывает, что время рендера одного кадра занимает несколько часов или даже несколько дней. В данном случаи 3D художникам практически не нужно прибегать к оптимизации, и они могут использовать 3D модели высочайшего качества, а также текстурные карты с очень большим разрешением. В итоге, картинка получается значительно лучше и фото-реалистичней по сравнению с рендером в реальном времени.

Программы для рендеринга.

Сейчас, на рынке присутствует большое количество рендеринг движков, которые отличаются между собой скоростью, качеством картинки и простотой использования.

Как правило, рендер движки являются встроенными в крупные 3D программы для работы с графикой и имеют огромный потенциал. Среди наиболее популярных 3D программ (пакетов) есть такой софт как:

  • 3ds Max;
  • Maya;
  • Blender;
  • Cinema 4d и др.

Многие из этих 3D пакетов имеют уже идущие в комплекте рендер движки. К примеру, рендер-движок Mental Ray присутствует в пакете 3Ds Max. Также, практически любой популярный рендер-движок, можно подключить к большинству известных 3d пакетов. Среди популярных рендер движков есть такие как:

  • V-ray;
  • Mental ray;
  • Corona renderer и др.

Хотелось бы отметить, что хоть и процесс рендеринга имеет очень сложные математические просчеты, разработчики программ для 3D-рендеринга всячески пытаются избавить 3D-художников от работы со сложной математикой лежащей в основе рендер-программы. Они пытаются предоставить условно-простые для понимания параметрические настройки рендера, также материальные и осветительные наборы и библиотеки.

Многие рендер-движки сыскали славу в определенных сферах работы с 3д графикой. Так, например, “V-ray” имеет большую популярность у архитектурных визуализаторов, из-за наличия большого количества материалов для архитектурной визуализации и в целом, хорошего качества рендера.

Методы визуализации.

Большинство рендер движков использует три основных метода вычисления. Каждый из них имеет как свои преимущества, так и недостатки, но все три метода имеют право на своё применение в определенных ситуациях.

Читайте также:  Как включить режим домкрата на порше кайен

1. Scanline (сканлайн).

Сканлайн рендер — выбор тех, кто приоритет отдаст скорости, а не качеству. Именно за счет своей скорости, данный тип рендера зачастую используется в видеоиграх и интерактивных сценах, а также во вьюпортах различных 3D пакетов. При наличие современного видеоадаптера, данный тип рендера может выдавать стабильную и плавную картинку в реальном времени с частотой от 30 кадров в секунду и выше.

Алгоритм работы:

Вместо рендеринга «пикселя по пикселю», алгоритм функционирования «scanline» рендера заключается в том, что он определяет видимую поверхность в 3D графике, и работая по принципу «ряд за рядом», сперва сортирует нужные для рендера полигоны по высшей Y координате, что принадлежит данному полигону, после чего, каждый ряд изображения просчитывается за счет пересечения ряда с полигоном, который является ближайшим к камере. Полигоны, которые больше не являются видимыми, удаляются при переходе одного ряда к другому.

Преимущество данного алгоритма в том, что отсутствует необходимость передачи координат о каждой вершине с основной памяти в рабочую, а транслируются координаты только тех вершин, которые попадают в зону видимости и просчета.

2. Raytrace (рейтрейс).

Этот тип рендера создан для тех, кто хочет получить картинку с максимально качественной и детализированной прорисовкой. Рендеринг именно этого типа, имеет очень большую популярность у любителей фотореализма, и стоит отметить что не спроста. Довольно часто с помощью рейтрейс-рендеринга мы можем увидеть потрясающе реалистичные кадры природы и архитектуры, которые отличить от фотографии удастся не каждому, к тому же, нередко именно рейтрейс метод используют в работе над графиков в CG трейлерах или кино.

К сожалению, в угоду качеству, данный алгоритм рендеринга является очень медлительным и пока что не может использоваться в риал-тайм графике.

Алгоритм работы:

Идея Raytrace алгоритма заключается в том, что для каждого пикселя на условном экране, от камеры прослеживается один или несколько лучей до ближайшего трехмерного объекта. Затем луч света проходит определенное количество отскоков, в которые может входить отражения или преломления в зависимости от материалов сцены. Цвет каждого пикселя вычисляется алгоритмически на основе взаимодействия светового луча с объектами в его трассируемом пути.

Метод Raycasting.

Алгоритм работает на основе «бросания» лучей как будто с глаз наблюдателя, сквозь каждый пиксель экрана и нахождения ближайшего объекта, который преграждает путь такого луча. Использовав свойства объекта, его материала и освещения сцены, мы получаем нужный цвет пикселя.

Нередко бывает, что «метод трассировки лучей» (raytrace) путают с методом «бросания лучей» (raycasting). Но на самом деле, «raycasting» (метод бросания луча) фактически является упрощенным «raytrace» методом, в котором отсутствует дальнейшая обработка отбившихся или заломленных лучей, а просчитывается только первая поверхность на пути луча.

3. Radiosity.

Вместо «метода трассировки лучей», в данном методе просчет работает независимо от камеры и является объектно-ориентированным в отличие от метода «пиксель по пикселю». Основная функция “radiosity” заключается в том, чтобы более точно имитировать цвет поверхности путем учета непрямого освещения (отскок рассеянного света).

Преимуществами «radiosity» являются мягкие градуированные тени и цветовые отражения на объекте, идущие от соседних объектов с ярким окрасом.

Достаточно популярна практика использования метода Radiosity и Raytrace вместе для достижения максимально впечатляющих и фотореалистичных рендеров.

Что такое Рендеринг видео?

Иногда, выражение «рендерить» используют не только в работе с компьютерной 3D графикой, но и при работе с видеофайлами. Процесс рендеринга видео начинается тогда, когда пользователь видеоредактора закончил работу над видеофайлом, выставил все нужные ему параметры, звуковые дорожки и визуальные эффекты. По сути, все что осталось, это соединить все проделанное в один видеофайл. Этот процесс можно сравнить с работой программиста, когда он написал код, после чего все что осталось, это скомпилировать весь код в работающую программу.

Как и у 3D дизайнера, так и у пользователя видеоредактора, процесс рендеринга идет автоматически и без участия пользователя. Все что требуется, это задать некоторые параметры перед стартом.

Скорость рендеринга видео зависит от продолжительности и качества, которое требуется на выходе. В основном, большая часть просчета ложиться на мощность центрального процессора, поэтому, от его производительности и зависит скорость видео-рендеринга.

Рендеринг — это наше окно в виртуальный мир 3D. Узнайте о 3D рендеринге больше, откройте для себя различные техники и методы рендеринга 3d объектов.

Виртуальная фотография

«Привет мир 3D рендеринга»

3D рендеринг — это в основном процесс создания двухмерных изображений (например , для экрана компьютера) из 3D-модели. Другими словами, р ендеринг позволяет получить готовое изображение трехмерной модели в «плоском » варианте. Изображения генерируются на основе наборов данных, определяющих цвет, текстуру и материал определенного объекта на изображении.

Рендеринг впервые появился в 1960 году, когда Уильям Феттер создал изображение пилота, чтобы имитировать пространство, необходимое в кабине. Затем, в 1963 году, Иван Сазерленд создал Sketchpad, первую программу 3D-моделирования, в то время он работал в MIT. За свою новаторскую работу он известен как «Отец компьютерной графики».

В 1975 году исследователь Мартин Ньюэлл создал «Чайник Юты», трехмерную тестовую модель, которая стала стандартным тестовым рендером. Этот чайник, также называемый Newell Teapot, стал настолько культовым, что считается эквивалентом «Hello World» в мире 3d.

Как устроен 3d рендеринг

По сути, 3D рендеринг похож на фотографию. Например, программа рендеринга эффективно направляет камеру на объект для создания фотографии. Таким образом, цифровое освещение очень важно для создания детального и реалистичного рендера.

Со временем был разработан ряд различных методов рендеринга. Тем не менее, цель каждого рендера состоит в том, чтобы сделать изображение, основанное на том, как свет попадает на объекты, как в реальной жизни.

Техника рендеринга № 1: Растеризация

Видео игры представляют собой общий случай использования для растеризации.

Один из самых ранних методов рендеринга, растеризация, работает рассматривая модель как сетку многоугольников. Эти полигоны имеют вершины, в которые встроена такая информация, как положение, текстура и цвет. Эти вершины затем проецируются на плоскость, перпендикулярную к перспективе (то есть камеру).

С вершинами, действующими как границы, оставшиеся пиксели заполнены правильными цветами. Представьте себе, что сначала нужно нарисовать контур для каждого цвета, который вы рисуете — это и есть рендеринг с помощью растеризации.

Растеризация — это быстрая форма рендеринга. Он до сих пор широко используется, особенно для рендеринга в реальном времени (например , компьютерные игры, симуляции и интерактивный графический интерфейс). Совсем недавно этот процесс был еще более усовершенствован благодаря более высокому разрешению и сглаживанию, который использовался для сглаживания краев объектов и смешивания их с окружающими пикселями.

Техника рендеринга №2: Лучевое литье

Классическая демонстрация лучевого литья.

Несмотря на свою полезность, растеризация сталкивается с проблемами при наличии перекрывающихся объектов: если поверхности перекрываются, последняя нарисованная часть будет отражена при рендеринге, что приведет к отображению неправильного объекта. Чтобы решить эту проблему, была разработана концепция Z-буфера для растеризации. Она включает в себя датчик глубины, чтобы указать, какая поверхность находится под или над, в конкретной точке зрения.

Читайте также:  Помогите найти книгу по сюжету

Это стало ненужным, однако, когда было разработана отливка лучей. В отличие от растеризации, потенциальная проблема перекрывающихся поверхностей не возникает при лучевом литье.

Приведение лучей, как следует из названия, направляет лучи на модель с точки зрения камеры. Лучи выводятся в каждый пиксель на плоскости изображения. Поверхность, на которую она попадает первой, будет показана при рендеринге и любое другое пересечение после первой поверхности не будет отрисовано.

Техника рендеринга № 3: Трассировка лучей

Несмотря на преимущества, которые дает отливка лучей, в методике по-прежнему отсутствовала способность правильно моделировать тени, отражения и преломления. Таким образом, в помощь был разработка метод трассировки лучей.

Трассировка лучей работает аналогично лучевому литью, за исключением того, что она лучше отображает свет. По сути, первичные лучи с точки зрения камеры направляются на модели для получения вторичных лучей. После попадания на модель будут испускаться теневые лучи, отраженные лучи или преломляющие лучи, в зависимости от свойств поверхности.

Тень генерируется на другой поверхности, если путь луча тени к источнику света затруднен этой поверхностью. Если поверхность является отражающей, результирующий отраженный луч будет излучаться под углом и освещать любую другую поверхность, на которую он попадает и будет дополнительно излучать другой набор лучей. По этой причине этот метод также известен как рекурсивная трассировка лучей. Для прозрачной поверхности преломляющий луч испускается, когда на поверхность попадает вторичный луч.

Техника рендеринга № 4: Уравнение рендеринга

Дальнейшее развитие рендеринга в конечном итоге привело к уравнению рендеринга, которое пытается смоделировать, как свет должен излучатся с максимальной реалистичностью. С помощью этой техники считают, что свет испускается всем телами, а не только одним источником света. Это уравнение пытается рассмотреть все источники света в рендере, по сравнению с трассировкой лучей, которая использует только прямое освещение. Алгоритм, созданный с использованием этого уравнения, известен как глобальное или косвенное освещение.

Аппаратные средства для 3D рендеринга

Качество рендеринга улучшается, но процесс все еще медленный — поэтому крупные компании вкладывают значительные средства в рендер фермы. В то же время отдельные дизайнеры и художники должны использовать современное оборудование.

Программное обеспечение рендеринга использует GPU (графический ), CPU (центральный ) или оба вида процессоров для создания рендеров. Кроме того, приложения для рендеринга являются ресурсоёмкими программами. Для более быстрого рендеринга часто требуются дополнительные обновления. Скорость процессора, интеграция и совместимость видеокарт, совместимость с драйверами и оперативной памятью — вот некоторые из аспектов, обеспечивающих быстрый высококачественный рендеринг.

К слову о программном обеспечении для рендеринга, посмотрите этот огромный список инструментов и приложений для 3d рендеринга доступных сегодня.

Программное обеспечение для 3d рендеринга

Как бы грустно это не звучало, идеального рендера не бывает. Это потому, что постоянно находятся в равновесии несколько переменных, в том числе фотореализм, качество, скорость, размер данных и разрешение.

Несмотря на сложность, можно работать с этими основными факторами для достижения фотореалистичных визуализаций. Во-первых, модель должна быть скорректирована в правильной пропорции. Модель, масштабированная в реальной жизни, очень помогает. Размеры объектов не обязательно должны быть точными, так как детали могут подвергаться корректировке, если они отображаются на визуализации.

Материалы объектов должны быть как подходящими, так и высокодетализированными для достижения максимально реалистичных результатов. Случайные элементы в текстурах, также помогают рендерам выглядеть более реалистично.

Интенсивность освещения, температура и расположение — это, конечно, огромный фактор. Правильное количество и расположение света облегчит детали, чтобы быть достаточно видимым. Также обратите внимание, что цветовая температура, если она не установлена правильно, может испортить ваш рендер.

Наконец, постобработка — это последние штрихи к вашему рендеру. Простые ретуши вашего необработанного рендера могут превратить ваши рендеры в захватывающее фотореалистичное изображение.

Типы программного обеспечения для 3D-рендеринга

При поиске программного обеспечения для 3D-рендеринга вы встретите два повторяющихся термина, которые редко объясняются: biased ( «настраиваемый ») и unbiased ( «ненастраиваемый ») рендер. Вот что имеется в виду:

biased рендер (читается баяст) — это рендерер, где нужно НАСТРАИВАТЬ много параметров и он ПРЕДВЗЯТЫЙ, т.е. основанный не на «правде », а на каких-то своих личных допущениях.

biased программное обеспечение для 3D-рендеринга, в свою очередь, разработано для повышения эффективности. При расчете путей световых лучей они стратегически обманывают, чтобы сократить время рендеринга. В частности, это означает, что они интерполируют между кадрами или применяют размытие. Требуется определенный опыт, чтобы точно настроить предвзятого рендера для получения убедительного результата. Но в крупномасштабных проектах по анимации или спецэффектам, стоит потратить лишнюю расстоие с точки зрения экономии денег и времени.

По другую сторону unbiased рендер (читается анбаяст)- то есть рендерер, который НЕНАСТРАИВАЕМЫЙ (не нужно настраивать — нажал одну кнопку и сиди жди, пока картинка станет красивой) и он НЕПРЕДВЗЯТЫЙ. Непредвзятость выражается в том, что анбаяст рендерер старается максимально правдиво описать поведение света. Т.е. он использует формулы просчёта, которые на сегодняшний день максимально (на сколько могут) точно описывают физические законы, происходящие в природе (как свет падает, как отражается, как преломляется, как поглощается и т.д.).

unbiased рендер пытается рассчитать физически точные изображения. Это означает, что он отслеживают путь светового луча математически правильно, без каких-либо сокращений. Этот метод может привести к увеличению времени рендеринга. Поэтому анбаяст рендеринг редко используется для анимационных фильмов. Вместо этого его можно найти в графическом дизайне и архитектурной визуализации, поскольку время рендеринга не сильно влияет на график проекта.

Популярные применения 3d рендеринга

3D-рендеринг широко используется в области архитектуры

3D рендеринг изменил рабочие процессы во многих отраслях. В архитектуре и технике традиционные планы, карты и модели теперь дополняются реалистичными презентациями. Прототипирование с использованием рендеринга является менее затратным, а также сильно экономит время, т.к. можно сразу увидеть конечный результат, учесть все нюансы и внести соответствующие коррективы.

В современной киноиндустрии новые фильмы теперь сильно зависят от 3d рендеринга, а точнее уже не создаются без применения этого замечательного инструмента. Студии 3D-анимации работают над созданием анимационных фильмов высокой четкости. Для создания идеального снимка, физическим эффектам кино и реквизиту помогают видеоэффекты высокой четкости и компьютерные изображения. Нет предела, для создания сцена, все ограничено только фантазией человеческого мозга.

В маркетинге рендеры используются для изображения фотореалистичных изображений продуктов. Будучи экономически эффективными, маркетинговые отрасли используют рендеринг, чтобы сделать рекламные акции максимально реалистичными и увлекательными для потребителя.

Улучшение игр с помощью фотореалистичного рендеринга и высокой четкости имеет большое значение для отрасли. Каждый год разработчики игр продолжают стремиться к тому, чтобы сделать детали более реалистичными и захватывающими для геймеров.

Развитие 3D-рендеринга никогда не остановится, все будет ограничено только фантазией конкретного разработчика или группы разработчиков.

Ссылка на основную публикацию
Что написать о себе в инстаграмме девушке
Вроде как и всё ясно, но в самом деле, как только доходит до дела, написать о себе в Инстаграм, у...
Чем открыть cab файл на компьютере
Файл формата CAB открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
Чем открыть fb2 на телефоне
Формат электронных публикаций FB2, наряду с EPUB и MOBI, является одним из самых популярных для книг, публикуемых в интернете. Мы...
Что нового в айос 12 1
Apple выпустила iOS 12.1.1 − скорее всего, последнюю публичную сборку iOS 12 в этом году. Хотя это обновление по большей...
Adblock detector