Что такое адрес ячейки памяти

Что такое адрес ячейки памяти

АЛУ

Общая структурная схема процессора

Принцип фон Неймана

Лекция 3

Принцип фон Неймана. АЛУ. Программа как последовательность кодов команд. Адрес ячейки памяти. Регистры процессора. Как процессор складывает два числа.

Большинство современных ЭВМ строится на базе принципов, сформулированных американским ученым, одним из отцов кибернетики Джоном фон Нейманом. Впервые эти принципы были опубликованы фон Нейманом в 1945 г. в его предложениях по машине EDVAC. Эта ЭВМ была одной из первых машин с хранимой программой, т.е. с программой, запомненной в памяти машины, а не считываемой с перфокарты или другого подобного устройства. В целом эти принципы сводятся к следующему:

1) Основными блоками фон-неймановской машины являются блок управления, арифметико-логическое устройство, память и устройство ввода-вывода.

2) Информация кодируется в двоичной форме и разделяется на единицы, называемые словами.

3) Алгоритм представляется в форме последовательности управляющих слов, которые определяют смысл операции. Эти управляющие слова называются командами. Совокупность команд, представляющая алгоритм, называется программой.

4) Программы и данные хранятся в одной и той же памяти. Разнотипные слова различаются по способу использования, но не по способу кодирования.

5) Устройство управления и арифметическое устройство обычно объединяются в одно, называемое центральным процессором. Они определяют действия, подлежащие выполнению, путем считывания команд из оперативной памяти. Обработка информации, предписанная алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой.

Компьютеры, построенные на этих принципах, называются машинами фон‑Неймановского типа.

Процессор — центральная микросхема ЭВМ, осуществляющая операции по обработке информации и управляющая работой остальных устройств ЭВМ.

Процессор представляет собой микросхему с большим числом контактов, имеющую прямоугольную или квадратную форму и легко помещающуюся на ладони.

Изобретателем микропроцессора как схемы, в которую собрана практически вся основная электроника компьютера, стала американская фирма INTEL, выпустившая в 1970 году процессор 8008. С их появления и началась история ЭВМ четвертого поколения.

В своей работе процессор использует регистры — ячейки памяти, находящиеся внутри процессора. На рисунке приведена общая схема процессора.

Общая структурная схема процессора

Процессор разделен на две части:

операционное устройство (ОУ) и шинный интерфейс (ШИ).

Назначение ОУ — выполнение команд, а ШИ подготавливает команды и данные для выполнения. ОУ содержит:

арифметико-логическое устройство (АЛУ) — "отвечает" за выполнение команд,

устройство управления (УУ) — осуществляет выборку команд из памяти, пересылку их на АЛУ и перемещение полученных результатов в требуемую ячейку памяти;

10 регистров — применяются при вычислениях.

Эти устройства обеспечивают выполнение команд, арифметические вычисления и логические операции.

Три элемента ШИ — блок управления шиной, очередь команд и сегментные регистры — осуществляют следующие функции:

передачу данных на ОУ, в память и на внешние устройства ввода/вывода;

адресацию памяти с помощью четырех сегментных регистров;

выборку команд, требуемых для выполнения, из памяти в очередь команд.

Компьютер имеет два типа внутренней памяти. Постоянная память (ПЗУ или ROM — read-only memory). Она представляет собой специальную микросхему, из которой возможно только чтение, так как данные в ней специальным образом "прожигаются" и не могут быть модифицированы. Ее основное назначение: поддержка процедур начальной загрузки, выполнение различных проверок и т.д. Для целей программирования наиболее важным элементом ПЗУ является BIOS (Basic Input/Output System) — базовая система ввода/вывода.

Читайте также:  Как в ватсапе удалить контакт совсем

Память, с которой имеет дело программист, называется ОЗУ (RAM — random access memory) — оперативное запоминающее устройство. Ее содержимое доступно как для чтения, так и для записи. Здесь хранятся программы и данные во время работы компьютера.

Основным устройством обработки информации в ЭВМ является арифметико-логическое устройство (АЛУ). Его основой является электронная схема, составленная из большого числа транзисторов, называемая сумматором. Сумматором выполняются простейшие логические и арифметические операции над данными, представленными в виде двоичных кодов (нулей и единиц). К логическим операциям относятся логическое умножение (операция "И"), логическое сложение (операция "ИЛИ") и логическое отрицание (операция "НЕ"). Результатом операции логического умножения является 1, если все переменные, являющиеся исходными данными равны 1, и 0, если хотя бы одна из них равна 0. Вспоминая, что 1 моделируется электрическим сигналом, а 0 — отсутствием сигнала, можно сказать, что на выходе устройства будет электрический сигнал тогда и только тогда, когда сигнал будет иметься на каждом входе:

Результатом операции логического сложения является 0, если все исходные переменные равны нулю, и 1, если хотя бы одна из них равна 1. Результатом операции логического отрицания является 1, если на входе- 0, и 0, если на входе -1.

На основе этих трех операций можно производить арифметические действия над числами, представленными в виде нулей и единиц. Теоретической основой для этого являются законы, разработанные еще в 1847 году ирландским математиком Джорджем Булем, известные как Булева алгебра, в которой используются только два числа- 0 и 1. Ранее считалось, что эти работы Буля никому не нужны, и их автор подвергался насмешкам. Однако, в 1938 году американский инженер Клод Шеннон положил Булеву алгебру в основу теории электрических и электронных переключательных схем- сумматоров, создание которых и привело к появлению ЭВМ, способных автоматически производить арифметические вычисления.

Все остальные операции, производимые ЭВМ, сводятся к большому числу простейших арифметических и логических операций, аналогично тому, как операцию умножения можно свести к большому числу операций сложения.

В современных ЭВМ арифметико-логическое устройство объединяется с управляющими устройствами в единую схему — процессор.

В компьютерных системах работа с памятью основывается на очень простых концепциях. В принципе, все, что требуется от компьютерной памяти, — это сохранять один бит информации так, чтобы потом он мог быть извлечен оттуда.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера — это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством; в отличие от нее внешняя память, такая как файл на дискете, предназначена для долговременного хранения информации. Информация во внутренней памяти не сохраняется при выключении питания.

Каждая ячейка памяти имеет адрес, который используется для ее нахождения. Адреса — это числа, начиная с нуля для первой ячейки, увеличивающиеся по направлению к последней ячейке памяти. Поскольку адреса — это те же числа, компьютер может использовать арифметические операции для вычисления адресов памяти.

Архитектура каждого компьютера накладывает собственные ограничения на величину адресов. Наибольший возможный адрес определяет объем адресного пространства компьютера или то, какой объем памяти он может использовать. Обычно компьютер использует память меньшего объема, чем допускается его возможностями адресации. Если архитектура компьютера предусматривает наибольшее адресное пространство, это накладывает суровые ограничения на возможности такого компьютера. Адреса в 8088 имеют длину 20 бит, следовательно, процессор позволяет адресовать два в двадцатой степени байта или 1024 К.

Читайте также:  Осциллограф с гальванической развязкой

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8782 — | 8313 — или читать все.

Адрес — ячейка — память

Адрес ячейки памяти , где хранится слово инструкции. [1]

Адрес ячейки памяти , с которой начинается выбор показаний датчиков. [2]

Адрес ячейки памяти , определяемый командой передачи управления. [3]

Адреса ячеек памяти , указанные в команде, можно вычислять и преобразовывать как числа. [4]

Адреса ячеек памяти изображаются целыми двоичными числами, начиная с нуля; положение любого поля, или группы байтов, в основной памяти машины определяется адресом крайнего левого байта поля. [5]

Адрес ячейки памяти , содержащей либо прямой, либо другой косвенный адрес. [6]

Адрес ячейки памяти , в которую должен быть помещен результат операции. [7]

Адрес ячейки памяти , где расположен операнд, указывается во втором и третьем байтах команды, которые в этом случае являются соответственно младшим и старшим байтами адреса. [8]

Адрес ячейки памяти , в которой хранится код первой исполняемой команды, называют вектором начального запуска или вектором сброса. В некоторых МК этот адрес однозначно определен и приведен в техническом описании. Про такие МК говорят, что они имеют фиксированный вектор сброса. В других МК вектор сброса может быть произвольно определен пользователем. На этапе программирования МК необходимый вектор начального запуска записывается в ячейки с фиксированными адресами, и при выходе МК из сброса автоматически загружается в счетчик команд. О таких МК говорят, что они имеют загружаемый вектор сброса. Загружаемый вектор сброса имеют все 8-разрядные МК фирмы Motorola, выполненные по структуре с единым адресным пространством команд и данных. [9]

В команде адрес ячейки памяти , где расположен операнд, определяется содержимым регистровой пары, явно или неявно указанной в коде команды. [10]

Где указывается адрес ячейки памяти и где расположен операнд при прямой адресации. [11]

Слово представляет собой адрес ячейки памяти , объем которой не превышает 65 536 байт. [12]

У большинства микропроцессоров адрес ячейки памяти представляет собой одно число. А у микропроцессора 8088 адрес каждой ячейки памяти задается двумя числами: номером блока и смешением. Такой странный метод адресации обусловлен тем, что команды программы для микропроцессора 8088 и ее данные должны располагаться в разных частях памяти, другими словами, в разных сегментах. Вспомните, как ищут в городе чей-нибудь дом: сначала находят улицу ( считайте ее сегментом), а затем дом с нужным номером ( смещением) на этой улице. [13]

При такой адресации адрес ячейки памяти , к которой необходимо обратиться, содержится в самой команде. К числу команд с прямой адресацией относятся также команды обращения к портам ввода или вывода. Прямая адресация наиболее удобна с точки зрения программиста, поскольку сразу задает нужный адрес. [14]

Читайте также:  Zalman cnps11x performa установка

При этой адресации адрес ячейки памяти , к которой необходимо обратиться, хранится в адресных регистрах или регистровых парах. Команды этой группы имеют длину в одно слово. Помимо кода операции слово команды содержит двоичный код, определяющий используемые регистры или регистровые пары. При выполнении команды адрес из регистра или регистровой пары поступает через буферный регистр адреса на шину адреса. Косвенная регистровая адресация уменьшает объем программы, но требует предварительной загрузки регистровой пары, поэтому такая адресация наиболее эффективна, когда один и тот же адрес используется в программе многократно. [15]

В микропроцессоре 8086 шина адреса состоит из 20 линий. Он может адресовать 2 20 байт. Однако размерности регистров, с помощью которых они адресуются, ограничены 16 битами. Поэтому при формировании адреса из двух частей (сегмента и смещения) для его вычисления внутри сегмента используется формула

где А8 адрес начала сегмента (т. е. определяет содержимое одного из регистров СБ, 58, 05, Е5); А — смещение относительно начала сегмента (содержимое регистра IР, 5Р или смещение адреса переменной, расположенной в сегменте данных).

Для записи адреса используется форма А3 например, запись 400:20 определяет следующий логический адрес:

ЕА = 4001 • 16 + 20/г = 40001 + 20/г = 4020/г.

Эта запись равнозначна следующим: 401:10, 402:0 и т. д.

В программах начальный адрес сегмента всегда определяется содержимым одного из сегментных регистров, и в некоторых случаях адреса записываются в виде, например, 05:10. В этом случае адрес составляет текущее значение регистра сегмента данных и смещение в 10й байт от начала сегмента. В случае косвенной адресации возможна запись адреса, например, в виде 55:ВР, т. е. содержимое 55 определяет компоненту А3, регистр ВР — компоненту А адреса. Если при определении адреса в програм-ме используется только часть Л, a As остается неизменной, то адрес называется ближним (near address), если применяются и А, и As, то адрес называется дальним (far address).

Например, адресное пространство памяти имеет несколько выделенных областей: вектора прерываний (начинаются с 0:0, длиной 1 Кбайт), системная область (начинается с 40:0), область видеопамяти (графическая — с А000:0, текстовая — с В000:0).

Существует две разновидности многопроцессорной обработки: асимметричная (Asymmetric Multiprocessing, ASMP) и симметричная (Symmetric Multiprocessing, SMP). При асимметричной обработке нагрузка распределяется между процессорами так, что один или несколько из них обслуживают только операционную систему, а остальные заняты приложениями. При симметричной обработке любой процесс, требующий обработки, может быть поручен любому свободному процессору. В силу большей гибкости симметричной модели операционная система с поддержкой SMP обеспечивает два важных преимущества. Во-первых, повышается отказоустойчивость сети, так как каждый процессор способен справиться с любой задачей, и потому отказ одного процессора не влечет крах всей системы. Во-вторых, улучшается балансировка нагрузки, так как операционная система способна распределять ее среди процессоров равномерно и тем самым предотвращать появление узких мест из-за слишком частых обращений к одним процессорам и пренебрежения другими.

Ссылка на основную публикацию
Что написать о себе в инстаграмме девушке
Вроде как и всё ясно, но в самом деле, как только доходит до дела, написать о себе в Инстаграм, у...
Чем открыть cab файл на компьютере
Файл формата CAB открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
Чем открыть fb2 на телефоне
Формат электронных публикаций FB2, наряду с EPUB и MOBI, является одним из самых популярных для книг, публикуемых в интернете. Мы...
Что нового в айос 12 1
Apple выпустила iOS 12.1.1 − скорее всего, последнюю публичную сборку iOS 12 в этом году. Хотя это обновление по большей...
Adblock detector