Что называется размерностью матрицы

Что называется размерностью матрицы

Матрицей называется прямоугольная таблица из чисел с некоторым количеством m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.

Матрица порядка m × n записывается в форме:

или (i=1,2. m; j=1,2. n).

Числа aij входящие в состав данной матрицы называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j— номер столбца.

Матрица строка

Матрица размером 1×n, т.е. состоящая из одной строки, называется матрицей-строкой. Например:

Матрица столбец

Матрица размером m×1, т.е. состоящая из одного столбца, называется матрицей-столбцом. Например

Нулевая матрица

Если все элементы матрицы равны нулю,то матрица называется нулевой матрицей . Например

Квадратная матрица

Матрица A порядка m×n называется квадратной матрицей, если количество строк и столбцов совпадают: m=n. Число m=n называется порядком квадратной матрицы. Например:

Главная диагональ матрицы

Элементы расположенные на местах a 11, a 22 . ann образуют главную диагональ матрицы. Например:

В случае m×n -матриц элементы aii ( i= 1,2. min(m,n)) также образуют главную диагональ. Например:

Элементы расположенные на главной диагонали называются главными диагональными элементами или просто диагональными элементами .

Побочная диагональ матрицы

Элементы расположенные на местах a 1n, a 2n-1 . a n1 образуют побочную диагональ матрицы. Например:

Диагональная матрица

Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:

Единичная матрица

Квадратную матрицу n-го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, называется единичной матрицей и обозначается через E или E n , где n — порядок матрицы. Единичная матрица порядка 3 имеет следующий вид:

След матрицы

Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A. Например:

Верхняя треугольная матрица

Квадратная матрица порядка n×n называется верхней треугольной матрицей, если равны нулю все элементы матрицы, расположенные под главной диагональю, т.е. aij=0, при всех i>j . Например:

Нижняя треугольная матрица

Квадратная матрица порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. aij=0, при всех i T ).

Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A).

Ядро или нуль пространство матрицы

Множесто всех решений уравнения Ax=0, где A- mxn-матрица, x— вектор длины n — образует нуль пространство или ядро матрицы A и обозначается через Ker(A) или N(A).

Противоположная матрица

Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A, элементы которой отличаются от элементов A знаком.

Кососимметричная (Кососимметрическая) матрица

Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:

В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.

Пример кососимметрической матрицы:

Разность матриц

Разностью C двух матриц A и B одинакового размера определяется равенством

Для обозначения разности двух матриц используется запись:

Степень матрицы

Пусть квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:

где E-единичная матрица.

Из сочетательного свойства умножения следует:

где p,q— произвольные целые неотрицательные числа.

Симметричная (Симметрическая) матрица

Матрица, удовлетворяющая условию A=A T называется симметричной матрицей.

Для симметричных матриц имеет место равенство:

Сущность матрицы

Матрица — это прямоугольная таблица, содержащая числа и имеющая некоторое число строк ($m$) и столбцов ($n$). Строки матрицы — это элементы, стоящие на одной линии, идущей слева направо, а столбцы — элементы, стоящие на одной линии, идущей сверху вниз.

Читайте также:  Как сделать тепловизор своими руками

Числа m и n определяют порядок (размерность) матрицы.

Аналогом матрицы является обычная двумерная таблица.

Основные действия над матрицами

Над матрицами возможно выполнять следующие основные действия:

  • Сложение матриц;
  • Умножение матрицы на число;
  • Умножение матриц друг на друга (применимо, если матрицы согласованы друг с другом — то есть, матрица $A$ должна иметь количество столбцов, равное количеству строк в матрице $B$);
  • Транспонирование матрицы; *Умножение матрицы на вектор-столбец или строку;
  • Вычисление определителя матрицы.

Как правило, матрица порядка $m imes n$ записывается следующим образом:

Попробуй обратиться за помощью к преподавателям

Реже для записи матрицы вместо круглых скобок используют двойные вертикальные линии, например, $left| a_
ight| $, где $i=1. m,j=1..n$.

Числа $a_ $ из записи матрицы называются элементами матрицы, при этом $i$ — номер строки, $j$ — номер столбца.

Для обозначения матрицы часто используют заглавные буквы латинского алфавита: $A, B, C$ и т.д.

Определить какого размера матрица и выписать элементы матрицы с их номерами.

Решение:

Порядок матрицы $А$: $2 imes 2$.

Элементы матрицы А: $a_ <11>=1,a_ <12>=3,a_ <21>=6,a_ <22>=-2$.

Различают несколько видов матриц:

  • Квадратная и прямоугольная;
  • Вектор-строка и вектор-столбец;
  • Скаляр;
  • Диагональная;
  • Единичная и нулевая;
  • Треугольная.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Квадратной матрицей порядка $n$ называется матрица размерности $n imes n$, т.е. число строк и столбцов одинаково, то есть количество элементов в строках и столбцах равное.

Прямоугольной матрицей называется матрица размерности $m imes n$, т.е. число строк и столбцов неодинаково.

Вектор-строка — это матрица, которая состоит только из одной строки элементов, т.е. размерность матрицы $1 imes n$.

Вектор-столбец — это матрица, которая состоит только из одного столбца, т.е. размерность матрицы $m imes 1$.

Скаляром называется матрица, содержащая только один элемент, т.е. размерность матрицы $1 imes 1$.

Определить вид каждой матрицы.

Решение:

Квадратная матрица имеет главную и побочную диагонали, причем:

  • Элементы главной диагонали расположены на линии, которая направлена от левого верхнего угла матрицы (элемент $a_ <11>$) до правого нижнего угла матрицы (элемент $a_ $);
  • Элементы побочной диагонали расположены на линии, которая направлена от правого верхнего угла матрицы (элемент $a_ <1n>$) до левого нижнего угла матрицы (элемент $a_ $).

Диагональная матрица — это квадратная матрица, у которой все элементы, находящиеся вне главной диагонали, равны нулю.

Единичная матрица — это диагональная матрица, у которой все элементы, находящиеся на главной диагонали, равны единице, такую матрицу можно применять для транспонирования. Обозначение единичной матрицы: $Е$.

Нулевая матрица — это матрица, у которой все элементы равны нулю.

Треугольная матрица — это квадратная матрица, элементы которой, находящиеся ниже или выше главной диагонали, равны нулю.

Различают верхнетреугольную и нижнетреугольную матрицы. В первом случае нулевые элементы находятся ниже главной диагонали, во втором случае — выше главной диагонали.

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.

В общем виде матрицу размером m×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы. Элементы матрицы удобно снабжать двумя индексами aij: первый указывает номер строки, а второй – номер столбца. Например, a23 – элемент стоит во 2-ой строке, 3-м столбце.

Читайте также:  Python сумма элементов списка

Если в матрице число строк равно числу столбцов, то матрица называется квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц. Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если a11 = b11, a12 = b12, a21 = b21 и a22 = b22.

Транспонирование. Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием.

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают A T .

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

Примеры. Найти сумму матриц:

  1. .
  2. — нельзя, т.к. размеры матриц различны.
  3. .

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C=A+(B+C).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

  1. .

  1. .
  2. Найти 2A-B, если , .

.

Найти C=–3A+4B.

Матрицу C найти нельзя, т.к. матрицы A и B имеют разные размеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:

Читайте также:  Как изменить звонок будильника на iphone

.

Таким образом, например, чтобы получить у произведения (т.е. в матрице C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (aij) размера m×n на матрицу B = (bij) размера n×p, то получим матрицу C размера m×p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

    Пусть

Найти произведение матриц.

.

  • .
  • — нельзя, т.к. ширина первой матрицы равна 2-м элементам, а высота второй – 3-м.
  • Пусть
  • , B·A – не имеет смысла.

    Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙BB∙A. Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

    Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC.

    Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A.

    Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

    Например, если , то

    .

    Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

    Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.

    Определитель обозначается символом .

    Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

    Примеры. Вычислить определители второго порядка.

    1. .
    2. Вычислить определитель матрицы D, если D= -А+2В и

    Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

    Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

    .

    Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

    Примеры. Вычислить определитель третьего порядка.

    1. .
    2. .
    3. Решите уравнение..

    .

    Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.

    Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

    Ссылка на основную публикацию
    Чем открыть cab файл на компьютере
    Файл формата CAB открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
    Форум лексус рх 350 2007
    Как выбрать Lexus RX?Надёжная ли машина?Какой расход топлива?Какие бывают комплектации?Насколько нужны те или иные функции?На что смотреть при покупке? Информация...
    Форум грибников витебской области
    В Беларуси много грибов: белые грибы, подосиновики, лисички и др. #новостиlespr или #newslespr - добавляйте фото в инстаграм с таким...
    Чем открыть fb2 на телефоне
    Формат электронных публикаций FB2, наряду с EPUB и MOBI, является одним из самых популярных для книг, публикуемых в интернете. Мы...
    Adblock detector